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1 Materials and Methods

The demographic model is characterised by a highly detailed social structure, which in-
corporates households and schools. This is a critical component of the framework used
as it allows to consider the present heterogeneities in contact patterns among individuals.
In addition, the explicit representation of each individual in the population allows us to
simulate control strategies targeting individuals instead of class of individuals, such as the
immunization of siblings of susceptible naive infants and the vaccine administration to
pregnant women.

1.1 Empirical data

The socio-demographic structure of the model, both at the individual and at the household
level, is generated using the Demographic and Health Survey data for Kenya collected in
2003 [1]. In particular, the following variables were considered:

• household records: age of the household head, list of household members character-
ized by their age, sex and relationship with the household head

• individual records: age, marital status, number of children, school enrollment of a)
women between 15 and 50 years of age and b) men between 20 and 55 years of age;
age and school enrollment for children younger than 15 years of age;

• birth records: date of birth, age of mother and number of siblings at birth.

Two data sources were used to generate schools and to assign children to schools: 1)
school size distribution of primary schools taken from the Open Kenya data set [2]; 2)
school attendance rates by age taken from the DHS individual records.

The RSV transmission components of the model were calibrated using data from a
cohort study carried out between 2002 and 2005 in the Kilifi district during 3 consecutive
epidemics [3]. In this study the incidences of primary and repeated RSV infections are
reported for the following age groups: 0-5m, 6-11m, 12-17m, 18-23m 24-30m. The reported
serological profile obtained at the end of the study period in the considered cohort is instead
provided for the following age groups: 0-2m, 3-5m, 5-8m, 9-11m, 12-17m, 18-23m, >24m.

1.2 Socio-demographic model

Each individual i in the model is characterized by: age, sex, the index of the household
where she/he lives in hi and, if individual i is a student, the index of the school she/he
attends si. A schematic diagram of how individuals are considered in the model is shown
in Fig. S1.

Generation of individuals and households

The synthetic population of individuals is generated iteratively, household by household,
according to a stochastic procedure that starts from the generation of the head of the

2



LEGEND

Adults

Children

Households

Infants

Transmission within schools

Transmission within household

School

Transmission in the general community

Figure S1: Schematic representation of the model.

household, then followed by the generation of her/his relatives. Different household struc-
tures and sizes are obtained indirectly by generating step by step individuals associated to
the household head and by co-locating them in her/his household.

Specifically, the first member of a household is generated and her/his age ah and marital
status mh are assigned according to the age distribution of household heads and frequencies
of married, widowed, divorced and never married household heads of age ah, as resulting
from the analysis of the DHS household records.

Additional household members are generated according to the probability that a house-
hold head of age ah is not living alone and according to:

• the probability P (w|ah,mh) of observing w wives/husbands of the household head in
an household having head of age ah and with marital status mh, stratified by sex of
the household head;

• the probability P (b|ah) of observing b brothers of the household head in a household
having head of age ah;

• the probability P (s|ah) of observing s sisters of the household head in a household
having head of age ah;

• the probability P (p|ah) of observing p parents/parents-in-law of the household head
in a household having head of age ah;

• the probability P (ch|ah,m) of observing ch sons/daughters of the household head h,
given household head age ah and marital status mh.

It is worth noting that the model accounts for the possibility of multiple partners, but
only in the case of the household head. Nonetheless, the occurrence of multiple partners
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observed in the dataset used is negligible, so in more than 99% of cases the number of
partners is equal to 1.

The age of each generated household member am is assigned by using the distribution of
the age difference, as reported in the DHS records, between the household head h and the
“type” tm (defined by her/his relation with the household head) of individual m, stratified
by the age of household head. In addition, gender is assigned to each new generated
individual by considering a 1:1 sex ratio.

In order to account for the co-location of up to 4 generations within a single household
(from parents of the household head to her/his grandchildren) and to reproduce the complex
structure observed in Kenyan households (e.g., the presence of daughter/son in law of
the household head), we employed the following procedure repeated over each household
member m generated at the previous step, except for the household head and her/his
possible partner:

• given the type tm of household member m (defined by her/his relation with the
household head) and her/his age am, the marital status mm is assigned according to
the probability P (mm|am, tm) of observing the marital status mm in individuals of
age am and type tm in the DHS household records;

• partners of married members are generated and assigned to the household, while their
age is assigned according to the distribution of the age difference between husband
and wife reported in the DHS records and stratified in 10 age classes of the husband;

• for each generated women w of age aw, marital status mw and type tw, which is
defined as her relationship with the household head (e.g. sister, daughter, daughter
in law, etc.), cw children are assigned to the household according to the observed
probability P (cw|aw,mw, tw) of having cw sons or colorblack daughters living in the
same household of their mother among mothers of age aw, marital status mw and
type tw.

• the age of new generated children (i.e. of nephews, nieces and grandchildren) is
assigned according to the distribution of the observed age difference between mothers
and children, computed conditionally to the cardinality of the child considered (1st
child, 2nd child, etc.); gender is assigned to new generated children by considering a
1:1 sex ratio;

At the end of the above described procedure, households are defined as the set of individuals
associated to a specific household head (including the houshold head). Individuals are thus
characterized by age, sex, marital status and their relation with the household head (wife,
sister/brother, son/daughter, son/daughter in law, grandchild, parent/parent in law, etc).
The procedure is repeated until all individuals of the population are generated.

Generation of schools

Primary schools are generated according to the following procedure:
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Figure S2: Validation of socio-demographic model. a) Boxplot (2.5%, 25%, 75% and 97.5%
quantile and mean) of the age distribution of the population as simulated in the model
(blue) and as computed according to DHS records (red); b) Distribution of household size
in the population as simulated in the model (blue) and as computed according to DHS
records (red).

• individuals are defined as students according to the age-specific enrollment rate re-
ported in the DHS data-set;

• a set of schools is generated in such a way that each student of the synthetic popu-
lation can find place in a school;

• the size of the generated schools is determined by randomly sampling from the dis-
tribution of school size reported in the Open Kenya data-set;

• students are randomly assigned to different schools.

Births, deaths, aging and school enrollment

The model accounts for the vital dynamics of the population. In particular, newborns are
generated according to observed fertility rates as computed by using DHS birth records [1];
individuals die according to the observed mortality rate by age and gender, as reported in
the World Population Prospects of the United Nations [4]. In the model births and deaths
occur daily while the progressive aging of individuals occurs monthly. Moreover, once a
year, in January, individuals can enter and leave schools, according to age-specific school
enrollment rates as computed from DHS individual records.
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Figure S3: a) Boxplot (2.5%, 25%, 75% and 97.5% quantile and mean) of school enrollment
by age for primary schools in Kenya as simulated in the model (blue) and as computed
according to DHS records (red); b) Primary school size distribution in Kenya as simulated
in the model (blue) and as computed according to Open Kenya (red); c) Simulated age
distribution within schools.

Validation of socio demographic model

Model validation is carried out by running the algorithm described above for the generation
of a synthetic population of about 25,000 individuals which reflects the size of DHS records
(all the remaining simulations in the manuscript assume instead a population of 200,000
individuals). Repeated runs have been considered in order to account for the stochastic
variability of the algorithm employed for households and schools generation.

The obtained results have been compared to DHS household and individuals records
for the population of Kenya, in terms of age structure of the population and household size
distribution, which represent two descriptive statistics of the modeled population that have
not been directly used in the model to generate households structures and individuals’ age.

As shown in Fig.S2 the generated synthetic population is compliant with descriptive
statistics obtained from DHS records. The model is also able to well reproduce the age-
specific school attendance rate computed from the DHS and school size distribution re-
ported by Open Kenya (see Fig.S3).

1.3 Additional details on the RSV transmission model

Each simulated epidemic is initialized with 10 infected individuals randomly chosen in a
synthetic population of 200,000 individuals and it runs for 4 consecutive years (i.e. from
the beginning of 2002 to the end of 2005). The system is initialized with no other infec-
tions in the residual population and temporary protection against RSV infection gained
by individuals during previous RSV epidemic seasons is assumed to have already waned.
Individuals older that 5 years are assumed to have already experienced at least one RSV
infection in the past, while only a fraction of individuals under 5 years of age is assumed to
have already experienced RSV in the past. This fraction is set in order to reflect the RSV
age-specific serological profile as observed at the end of the Kilifi cohort study [3]. Finally,
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a fraction of individuals is assumed to be protected by maternal antibodies (M) according
to the assumption that maternal protection lasts on average 4 months and that its duration
is exponentially distributed. Infection is continuously sustained in the simulated epidemics
by the importation of 5 new infected individuals each month. The individualbased model
implemented in the manuscript is a discrete-time stochastic model and the time-step (i.e.
∆t = 1day) was chosen in such a way that very few events per setting occur within each
time step.

Model outputs obtained under different assumptions on the size of the population and
on the number of monthly imported RSV cases have been compared in terms of RSV
primary and repeated incidence by age, age-specific serological profile and percentage of
transmission occurring in different settings. Results obtained by simulating a population of
20,000 and 500,000 individuals and obtained by considering a number of monthly imported
cases ranging from 2 to 10 individuals have revealed that model predictions are not sensitive
to different assumptions on these two factors.

1.4 Parameters estimation

Estimation of the free epidemiological parameters is performed by using a Bayesian Markov
chain Monte Carlo (MCMC) method, implemented following a random-walk Metropolis-
Hastings algorithm [5].

The method is used to estimate 1) the RSV transmission rate β, 2) the duration of com-
plete immunity that generates from each infection event δ and 3) the relative susceptibility
to RSV reinfection once temporary immunity has waned x.

Specifically, given the likelihood function L described in the main text, the Markov
chain is generated in such a way that its stationary distribution represents the posterior
distribution of parameters given the observed data. The chain is initialized with parameters
drawn from uninformative uniform prior distributions as follows: β = U [0, 1] days−1,
δ = U [0, 1000] days−1, x = U [0, 1]. At each iteration, if the current value of the parameter
is θ, a new value θ? = θeσθu is generated, where u is drawn from a normal distribution
N (0, 1) and σθ was adjusted in order to obtain an acceptance rate (percentage of accepted
trials) close to 23% [6, 7, 8]. Since all the parameters are positive, a log scale was used
to generate new parameters’ values. The adopted procedure is equivalent to sampling
the logarithm of the parameter θ from a Gaussian distribution (i.e. logθ? ∼ N (logθ, σ2

θ),
see [7, 8] for further details). Moreover, as the relative susceptibility to reinfection x is
assumed to be a real number between 0 and 1, new values for x were generated by defining
x = 1/(1 + y), by generating y? = yeσu and setting x? = 1/(1 + y?).

Following the procedure already used in [9], new generated values θ? are accepted or
rejected according to Metropolis-Hastings algorithm where the likelihood is approximated
by the likelihood associated to a single realization of the parameter vector θ?. The likelihood
associated to the current value of the parameters θ is re-evalutaed at each step in order to
ensure that the chain is not trapped at a local maximum due to stochastic variations on
outputs associated to θ [9].

We performed 100,000 iterations and considered a burn-in period of 30,000 steps.
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Figure S5: a,b,c) Joint pairwise posterior distributions of model parameters.

We checked convergence by considering chains associated to different starting points in
the parameter space and by visual inspection on the trace plots of chains (see for in-
stance Fig.S4a,b,c). The obtained posterior distributions of free parameters are shown in
Fig.S4d,e,f.

As expected, a relevant correlation between the transmission rate and the average du-
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ration of immunity has been found (see the joint pairwise posterior distribution in Fig.S5).
Indeed, similar incidence rates can be obtained when either a shorter duration of complete
protection gained after the infection is combined with a lower RSV transmission rate or a
larger duration of complete protection gained after the infection is combined with a higher
RSV transmission rate.

Finally, from the MCMC samples 1) we estimated the posterior means and 95% of cred-
ible intervals (CI) of the free parameters; 2) we sampled 1,000 parameters configurations
that we use to investigate the RSV transmission patterns in the population, to disentangle
the contribution of different social settings in the spread of the infection and to simulate
the different vaccination strategies considered.

It is worth of noting that, under the assumption of a setting independent transmission
rate, the contribution of different settings in the transmission of RSV is driven by a) the
different mixing by age characterizing different settings (e.g., more assortative at school),
b) the heterogeneity of mixing driven by the setting size (e.g., entailing repeated contacts
with the same individuals in household and more dispersed when considering contacts
occurring in the general community) and c) the heterogeneity between settings of the same
type (e.g., household of different size and composition).

1.5 RSV transmissibility potential

Given that an explicit equation to compute the basic reproduction number for individual
based models is not available, we inferred R0 - as already proposed in the literature [10,
11, 12] - from the simulated epidemics. In particular, we defined R0 =(1+rT) where T
is the generation time, here defined as the average length of the infectious period, and r
is the exponential growth rate estimated by fitting a linear model to the logarithm of the
simulated infection incidence over time. It is worth noting that this simple formula, which
is valid for simple homogeneously mixing SIR models, can be used to describe what happens
in the initial phase of an epidemic driven by an SIRS model with reduced susceptibility.
Indeed, given that the duration of temporary full protection is estimated to be 6 months
on average, the SIRS model, at least at the beginning of the epidemic season, can be
approximated by an SIR model when a fully susceptible population is initially considered.
We apply the same technique to estimate the effective reproduction number (Re), but by
considering that a fraction of the population is partially immune. In this latter case, we
assumed that individuals who have already experienced RSV in the past (i.e. a fraction by
age that reflects the observed age-specific RSV seroprevalence) have a lower susceptibility
to RSV infection (estimated through the MCMC procedure).

Finally, in the model, the Rindex is computed by randomly choosing an index case among
all susceptible individuals in the population and then keeping trace of all infections she/he
is responsible for. A fraction of the population is again assumed to be partially immune
to the infection at the beginning of the epidemic season when Rindex

e is computed.

2 Additional results
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Figure S6: a) Simulated percentage of household members infected within the household for
different household sizes. b) Simulated percentage of household members infected through
school contacts for different household sizes. c) Percentage of infants in household for
different household sizes. d) Percentage of children under 5 year of age in household for
different household sizes.

Since in the micro-simulation model each new infection is generated by a specific individual
in a specific setting, we recorded exactly the number of infections generated at each time
step in each setting, their age and the age of the individual who generated them. There-
fore, the percentage of transmission occurring at different settings, the average number of
secondary case per setting generated by each infected individual and the proportion of in-
fection episodes occurring due to contacts between two age classes were computed through
straightforward computations.

2.1 The role played by household size

The different contribution of household and school contacts in RSV transmission for in-
dividuals who belong to households of different size was investigated by tracking for each
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Figure S7: Median age at first RSV infection (in months) among naive individuals after
1 and 10 years of vaccination (2015, 2025), under the assumption of 100% of coverage
as obtained by assuming a duration of vaccine protection of 6 months (first row) and,
respectively, 8 months for vaccination of pregnant women and 1 year for all the remaining
vaccination targets (second row).

household the fraction of cases generated through contacts between household members
and schoolmates. Obtained results are shown in Fig.S6a,b. As expected, the fraction of
cases generated within households is predicted to increase with household size (see Fig.S6a).
Interestingly, the contribution of school transmission is instead larger for individuals be-
longing to medium size households with respect to small and big houses (see Fig.S6b). This
is possibly due to the fact that small households are mainly composed by one or two adults
and children before schooling age, while large households are often composed by at least 3
generations with a remarkable fraction of adults and pre-school children (see Fig.S6c,d).

2.2 Age at first RSV infection

The effect of different vaccination strategies on the age at first RSV infection among those
who have never experienced neither natural RSV infection nor RSV vaccination after 1
and 10 years of vaccination is shown in Fig.S7 under the assumption of 100% of coverage
and two scenarios for the duration of vaccine immunity. Our predictions show that the
median age at first infection is lowered by the routine immunization at 3 months of age,
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as a consequence of the fact that median age at first infection is computed only among
individuals that gets infected before vaccination. However, it is important to stress that
the proportion of infants who experience RSV infection before 3 months of age is reduced
by 23% thanks to routine immunization. On the opposite side, a remarkable increase of the
median age at first infection results as consequence of the yearly vaccination of students and
of vaccination of pregnant women when their vaccination is able to increase the duration
of maternal antibodies in their newborns. All other vaccination strategies result only in a
slight change in the median age at infection with respect to the pre-vaccination period.

3 RSV infection incidence in adults

The predicted incidence by age (including adults) is shown In the main text. Unfortunately,
to the best of our knowledge, data on incidence of infection rather than disease are rare
and only few attempts have been made to study the infection in older age groups. As a
consequence, it is difficult to obtain pristine infection incidence estimates in older children
or adults to validate model estimates. However, we performed a supplementary analysis, by
comparing the incidence predicted by our model in different age groups with available data
on RSV infection in adults. In particular, we attempted to compare model predictions with
data from a household study conducted in the epidemic of 2009/2010 in Kilifi, where 44
households, chosen among those with at least one infant and one older sibling <13y, were
followed for an entire RSV season for investigating the source of RSV infection in infants.
More specifically, we randomly selected 44 households among all simulated households
with at least one infant and one older sibling <13y and then estimated incidence rates at
different ages and compared them with available data. This procedure was repeated 50
times for each of 1,000 simulated epidemics in order to explore the variability of obtained
estimates related to the selected set of households.

The performed analysis suggests that the model is able to produce age-specific infection
incidence rates similar to the observed ones when specific households are selected (see
Fig.S8). However, the carried out analysis also suggests that an extremely high variability
in infection incidence rates by age is expected when estimates are obtained by analyzing
a small number of households (<50). Our conclusion is therefore that the data on adults’
infection collected in this household study - which was not designed for estimating incidence
in adults - are not appropriate neither to calibrate nor to validate our transmission model.
This is the reason why we considered only data on children for model parameterization.

4 Sensitivity analysis on transmission rates by set-

tings

In this work we assume that the transmission rate is setting independent, which means
that: 1) the individual contact rate is assumed to be the same among different settings;
2) each contact between a susceptible and an infected individual generates a new infection
with a probability that does not depend on the setting where the contact occurs.

12



In
c
id

e
n
c
e
 (

x
 1

0
0
) 

in
 i
n
d
iv

id
u
a
ls

 l
iv

in
g

w
it
h
 a

t 
le

a
s
t 
o
n
e
 R

S
V

 n
a
iv

e
 i
n
fa

n
t

 a
n
d
 1

 a
d
d
it
io

n
a
l 
c
h
ild

re
n
 <

1
3
y

<
1
y

1
−

4
y

5
−

1
4
y

1
5
−

3
9
y

>
4
0
y

0
5
0

1
0
0

1
5
0

Figure S8: Black triangles represent estimates obtained by infection episodes detected in
the household study performed during the epidemic of 2009/2010; different estimates of
incidence by age as obtained by different household synthetic studies through model simu-
lation are represented by grey points; illustrative cases have been chosen in order to show
that the model estimates are potentially compliant with observed data: points of the same
color refer to incidence estimates by age based on the same specific household synthetic
study (e.g. red points are associated to estimates of age-specific infection incidence as
obtained in the 271st realization of the syntetic household study).

The explicit inclusion of different transmission rates among settings would represent a
remarkable model refinement but would also require more detailed epidemiological data to
robustly estimate the relative levels of transmission in different settings.

In the main text we assume a RSV transmission rate that is setting independent. To
evaluate the robustness of our main findings, we consider different illustrative scenarios in
which the relative size of transmission rates in school and in the general community, with
respect to the transmission rate in households is a priori assumed and we re-estimated
the free epidemiological parameters. In particular the scenarios considered in this analysis
have been defined as follows:

• we assume the within-school transmission rate (βS) to be 1.5 and 2 times the house-
hold transmission rate (βH);

• we assume the transmission rate in the general community (βG) to be 0.75 and 0.5
times the household transmission rate;

• we assume the transmission rate in the general community to be 0.75 times the
household transmission rate and the within-school transmission rate to be 1.5 times
the household transmission rate;
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Figure S9: Percentage of infant infections due to household transmission (in all household
types (blue) and in the case where the source of infection is defined as in [13] (red)) as
obtained under different assumption on the household transmission rate (βH), the school
transmission rate (βS) and the transmission rate in the general community (βG). The
scenario of a setting independent transmission corresponds to the assumption that βH =
βS = βG.

• we assume the transmission rate in the general community to be 0.5 times the house-
hold transmission rate and the within-school transmission rate at school to be 2 times
the household transmission rate.

These results have been compared to the results presented in the main text in terms of
1) the percentage of infant primary infection generated by household transmission and 2)
the reduction of the infection incidence among infants and in the general population and
the number of vaccine doses administered after 1 and 10 years from vaccination.

Our analysis shows that the estimated contribution of household transmission in gen-
erating infant primary infections is stable under different assumption on the transmission
rate per settings (Fig.S9). It is also worth of noting that different assumptions on the
transmission rate per settings do not significantly affect the effectiveness of immunization
strategies considered. Specifically, figure S10 shows the effectiveness of different strategies
as obtained by our baseline assumption of a setting independent transmission rate while
figures S11, S12, S13, S14, S15, S16 show the effectiveness of different strategies as obtained
by simulating the six illustrative scenarios on setting-specific transmission rates described
above. Our results show that the set of strategies resulting effective in preventing RSV
infant infection remains the same for all the simulated scenarios.
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Figure S10: Baseline scenario. Average number of administered vaccine per person per
year (top row), boxplot (2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence
in infants (middle row) and in the general population (bottom row) as predicted by model
simulation before vaccination (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015
and 2025) associated to the considered vaccination strategies under the assumption that
βS = βG = βH . The gray line reported throughout is used as a reference indicator for the
no vaccination scenario.
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Figure S11: Average number of administered vaccine per person per year (top row), boxplot
(2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence in infants (middle row)
and in the general population (bottom row) as predicted by model simulation before vac-
cination (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015 and 2025) associated
to the considered vaccination strategies under the assumption that βS = βH , βG = 0.5βH .
The gray line reported throughout is used as a reference indicator for the no vaccination
scenario.
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Figure S12: Average number of administered vaccine per person per year (top row), boxplot
(2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence in infants (middle row)
and in the general population (bottom row) as predicted by model simulation before vac-
cination (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015 and 2025) associated
to the considered vaccination strategies under the assumption that βS = βH , βG = 0.75βH .
The gray line reported throughout is used as a reference indicator for the no vaccination
scenario.
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Figure S13: Average number of administered vaccine per person per year (top row), boxplot
(2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence in infants (middle row)
and in the general population (bottom row) as predicted by model simulation before vac-
cination (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015 and 2025) associated
to the considered vaccination strategies under the assumption that βG = βH , βS = 1.5βH .
The gray line reported throughout is used as a reference indicator for the no vaccination
scenario.
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Figure S14: Average number of administered vaccine per person per year (top row), boxplot
(2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence in infants (middle row)
and in the general population (bottom row) as predicted by model simulation before vac-
cination (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015 and 2025) associated
to the considered vaccination strategies under the assumption that βG = βH , βS = 2βH .
The gray line reported throughout is used as a reference indicator for the no vaccination
scenario.
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Figure S15: Average number of administered vaccine per person per year (top row), boxplot
(2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence in infants (middle row)
and in the general population (bottom row) as predicted by model simulation before vac-
cination (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015 and 2025) associated
to the considered vaccination strategies under the assumption that βG = 0.5βH , βS = 2βH .
The gray line reported throughout is used as a reference indicator for the no vaccination
scenario.
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Figure S16: Average number of administered vaccine per person per year (top row), boxplot
(2.5%, 25%, 75% and 97.5% quantile and mean) of RSV incidence in infants (middle row)
and in the general population (bottom row) as predicted by model simulation before vacci-
nation (yr. 2014) and after 1 and 10 years of vaccination (yrs. 2015 and 2025) associated to
the considered vaccination strategies under the assumption that βG = 0.75βH , βS = 1.5βH .
The gray line reported throughout is used as a reference indicator for the no vaccination
scenario.
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