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1 Data on Guinea sociodemographic structure and EVD inter-
ventions

According to the latest census data [1], Guinea has a population of 10,628,972 inhabitants residing in
an area of 245,836 km2, and subdivided into 8 regions and 34 prefectures. In our model, we placed the
capital of each prefecture in the exact location given by GPS coordinates and with the exact number
of inhabitants as obtained from available data. For the remainder of the territory of the prefecture, we
generated villages of about 400 inhabitants on average, randomly located over the territory, until the total
population of the prefecture was obtained. By using a standard procedure [2, 3], modeled individuals
were grouped into randomly assigned households built in such a way that household size distribution and
age structure within households match data available from the Demographic and Health Surveys (DHS)
Program [4] (see Fig S1).

According to the 2007 Guinean health statistics [5], there were 44 hospitals in Guinea, of which the
prefecture of reference is known; at least one hospital was present in each prefecture. Number of beds
and health care workers match available health statistics obtained from the WHO [6]. In our model, all
hospitals were always open, even in conjunction with the opening of ETUs, and worked at full capacity.
In addition to hospitals, Ebola treatment units (ETUs) were considered in the model, each operating in
the exact prefecture and since the exact date. Simulated number of beds and health care workers for
these facilities also match available information. ETUs in the model were located in the capital city of
the prefecture, and the respective health care workers were considered to be residing in the same city.
Data on contact tracing and community safe burials were obtained from the Guinean Ministry of Health
(GMoH) reports [7]; we do not have access to contact tracing forms at the level of individuals. The
weekly number of new cases occurring in the general population were taken both from the WHO website
(we consider both situation reports and patient database) and from GMoH reports [7]. The number of
cases among health care workers were obtained from GMoH reports [7]. The data used are summarized
in Fig. S2.
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Figure S1: A Household size distribution of Guinea. B Age structure of Guinea.
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Figure S2: A Weekly number of new cases according to the WHO situation reports (light grey), the
WHO patient database (grey) and the GMoH (dark grey). B Cumulative number of cases among health
care workers. C Daily admissions to ETUs. D Daily number of new traced contacts. E Daily number of
safe burials. The source for all data in B-E is the GMoH.

2 Transmission model and Ebola natural history

Each individual of the population, explicitly simulated as an agent of the individual-based model, has
an associated epidemiological status. The different stages of Ebola transmission were modeled following
Legrand et al. [8]: susceptible individuals can acquire infection after contact with an infectious individual
and become exposed (asymptomatic). At the end of the incubation period (which we assumed equal to
the latent period, as there is no evidence of pre-symptomatic Ebola transmission), exposed individuals
become infectious (symptomatic). Infectious individuals can transmit infection at home (to both house-
hold members and members of the extended family). Infectious individuals at home then may either be
hospitalized with 80% probability (see Sec. Results of the main text), die or recover. Hospitalized individ-
uals may either die or recover. However, after recovery, a hospitalized individual remains in the hospital
(though no longer infectious) for an additional period before being discharged. Deceased individuals may
transmit infection during their funeral (to household members and to the extended family) and are then
removed. Individuals belonging to the contact tracing pool are assumed to be properly checked daily and
admitted to a hospital/ETU right at the onset of symptoms. Each (above mentioned) key time period
used in the model for every individual is randomly sampled from an exponential distribution whose mean
is reported in Tab. S1. This reflects observed heterogeneity in the disease history across individuals. The
overall case fatality ratio is assumed to be 70.7% as reported in [9]. An extensive sensitivity analysis of
the above parameters has already been performed in [10] for Liberia.

The model accounts for three routes of transmission: transmission in households and in the general
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Table S1: Model parameters taken from the literature or directly inferred from the data.
Parameter Value Reference
Mean duration of incubation period 11.4 days [9]
Mean time from symptom onset to death 7.5 days [9]
Mean time from symptom onset to recovery for survivors 7.9 days [10]
Mean time from symptom onset to hospitalization 5 days [9]
Fraction of hospitalized cases 80% inferred∗

Mean time from hospitalization to death 4.2 days [9]
Mean time from hospitalization to recovery for survivors 4.6 days [10]
Mean time from hospitalization to dismissal for survivors 11.8 days [9]
Mean time from death to burial 2 days [8]
Overall case fatality ratio 70.7% [9]

∗ inferred from the data reported to the Guinean Ministry of Health as the crude approximation of the
number of cases admitted to ETUs divided by the total number of cases. Since ETUs were open and never
worked at full capacity over the period in which data is available, ETU admission could be considered as
a proxy for admission to health care facilities.

community (to the extended family) when infected individuals are at home, non-hospitalized; transmission
in hospitals; and transmission during funerals (to household and extended family members).

In addition, the model takes into account two important features of the 2014-15 Ebola epidemic in
Guinea: an age-dependent risk of infection – most infections occur among adults (see Sec. 4), and the
presence of superspreading events – few cases responsible for a large number of infections (see Sec. 5).

Simulations were initialized with 52 infected individuals geographically distributed in four prefectures
(namely Gueckedou, Conakry, Macenta and Dabola) based on information on the first confirmed cases
reported to the WHO. The national-level simulations were run until there were 495 cases, at which point
the simulated date was set to August 4, 2014 (according to GMoH reports [7]). This procedure, previously
used in [3, 10], synchronizes all simulations to start with the observed conditions on this date.

2.1 Transmission within households

At time t, a non-hospitalized infectious individual j is able to transmit EVD to all other members of
his/her household with the following force of infection:

λj(t) =
νjβf
Nfj (t)

where βf is the transmission rate in households (assumed to be the same for all households), Nfj (t) is
the household size at time t (thus excluding deceased and hospitalized members), and νj is a scalar factor
accounting for the heterogeneity in transmission among individuals - specifically, νj is sampled from a
gamma distribution having scale 4.78 and shape 0.2 (see Sec. 5).

The decision to make the force of infection inside a household depend on the number of members is
a common assumption [3, 10, 11] reflecting the fact that members of larger households may have less
frequent contact with the sick. This is especially relevant for Ebola as very close contact (i.e., mainly
contact with body fluids) is required for transmission.

2.2 Transmission in the extended family

Each household is linked to six additional households representing its extended family, which are sampled
with 50% probability in the same village and with 50% probability among households within 10 km to
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reflect contacts residing in the same general community. In [12] it has been estimated that 11.5 traced
contacts per case corresponds to about 30% detection probability of contact tracing investigation, which
implies a total of 40 individuals at risk of infection (corresponding in the model to members of household
and extended family). This information has been used to set the number of households composing
the network of extended family to 6 (as the average household size in Guinea is about 6 individuals).
Let αj be the set of additional households (i.e., belonging to the extended family) for an infectious
(non-hospitalized) individual j. Individual j transmits the infection to the members of αj with force of
infection

λj(t) =
νjσβf
Nαj

(t)

where Nαj
(t) is number of individuals in αj at time t and σ is the reduction of the transmission rate in

the extended family (0 ≤ σ ≤ 1).
A sensitivity analysis assuming different number of additional households and different distance at

which they are chosen was presented in [10] for the case of Liberia.

2.3 Transmission during burial ceremonies

Since it is likely that the bodies of those who died from EVD are still infectious, burial teams were
progressively trained and equipped throughout the country to prevent disease spread driven by traditional
funeral practices. In the model we assumed that funerals for individuals who died in ETUs were always
conducted safely. In the beginning of the epidemic, all individuals who died both in general hospitals
and at home (without being hospitalized) were assumed to be buried unsafely; after the beginning of
November 2014 (as derived from the GMoH situation reports [7]), all who died in general hospitals were
buried safely, while deceased at home had a daily probability of receiving a safe burial. In case of unsafe
burial, the deceased individual j transmits EVD to his/her household members and members of the
extended family αj similarly to transmission in households, namely:

λj(t) =
νjβb
Nfj (t)

to household members and

λj(t) =
νjσβb
Nαj

(t)

to members of the additional households, where βb is the transmission rate in unsafe burials. Note that
the same set of households involved in the general community transmission is assumed also for burial
ceremonies.

In particular, we assume that individuals at risk during a burial ceremony are those belonging to
the household and community settings (i.e., household members and members of the six additional
households constituting the extended family of the deceased). This follows the idea that the specific
network of contacts who are at highest risk of contracting the disease from a symptomatic Ebola case is
almost the same as those who would be involved in the preparation of the body for the burial ceremony
(for a description of traditional burial procedures see [13]).

2.4 Transmission in hospitals and ETUs

The limited availability of dedicated facilities over the territory of Guinea, especially in the first months
of the epidemic, caused Ebola patients to be admitted also to general hospitals, where specific protocols
for EVD management were not easily applied. As widely reported by official agencies [7, 14], a large
number of health care workers had contracted the disease while caring for Ebola patients, and many
have died. Many infections occurred in the period from October to December 2014 in non-Ebola health

6



care centers, probably as a consequence of the limited supply of personal protective equipment in these
facilities [15]; the poor operating conditions of hospitals allowed the spread of infection not only to HCW
but also to other patients. Thus it is reasonable to assume, as we did in our model, that non-Ebola
patients in hospitals were also at risk of contracting the disease. In particular, we assumed that an Ebola
case hospitalized to a non-dedicated facility was able to transmit infection to HCW and to other patients,
for instance through contacts in rooms and waiting areas.

This scenario is detailed as follows. Individuals infected with Ebola have an 80% probability of being
hospitalized. At every time step of the simulation, a symptomatic Ebola case seeking care is assigned
to an ETU in the same prefecture where he/she lives, provided that an ETU with unoccupied beds
exists in that prefecture; otherwise he/she gets hospitalized for one day into the closest hospital with
unoccupied beds; if there is no such hospital, the Ebola case is not hospitalized. The following day
the patient in hospital is either assigned to the closest ETU with unoccupied beds, or remains in the
same hospital. Afterwards, the same procedure is used to hospitalize non-Ebola cases, who are randomly
sampled from the population until full capacity of all hospitals in Guinea is reached. Non-Ebola cases
remain hospitalized for 7 days on average [10].

The choice of explicitly modeling hospitals requires an additional free parameter regulating the trans-
mission within this setting. However, the availability of data on recorded cases among HCW and the
inclusion of such data in the likelihood function allows the estimation of this additional parameter though,
obviously, with some uncertainty.

An Ebola-infectious individual j, admitted to a general hospital, transmits the infection to both
susceptible hospitalized individuals and to health care workers with force of infection

λj(t) =
νjβh
Nhj (t)

where βh is the transmission rate in hospital, and Nhj
(t) is the overall number of hospitalized individuals

and HCW in hospital hj .
An infectious individual j, hospitalized in ETU, transmits the infection only to HCW, with force of

infection equal to the force of infection in general hospitals with the transmission rate in hospital, βh,
rescaled by a 0.05 factor, to account for the lower infection probability of HCW in this setting with
respect to general hospitals, consistent with the assumptions from previous modeling studies [16, 10].

2.5 Overall force of infection and probability of being infected

At any time t of the simulation (we consider a time step ∆t = 1 day), A susceptible individual i has

a probability pi(t) = δ(ai)
[
1 − exp

(
−∆t

∑
j λj(t)

)]
of being infected from each infectious individual j

in the population, where ai is the age of individual i, and δ(ai) is the age-dependent risk of infection:
δ(ai) = 1 for the most affected age group (i.e., individuals aged 15 and over) and δ(ai) = δ = 0.246 for
individuals aged 0-14 (as estimated in Sec. 4).

The transmission rates across different settings βf , βh, βb and the scaling factor σ depend on the
specific population model used and on socio-demographic factors, and thus need to be estimated.

2.6 Modeling non-pharmaceutical intervention measures

We consider three non-pharmaceutical intervention measures that were performed during the outbreak:
i) operation of ETUs; ii) community safe burials; iii) contact tracing investigation.

2.6.1 ETU

We introduced ETUs in our model whose opening dates, locations, number of beds and number of HCWs
reflect the existing situation, as derived from publicly available information such as The Humanitarian
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Data Exchange (https://data.hdx.rwlabs.org), local newspapers, NGO reports. We assume that
there is no transmission between patients in ETUs, and transmission to HCW is reduced by 95% compared
with hospitals (i.e., the transmission rate in ETUs is 0.05βh). In sum, hospitalizing cases in ETUs has
three beneficial effects: 1) the period during which a case can transmit infection is shortened (since he
can transmit in the community only before hospitalization); 2) deceased cases are always safely buried
and thus do not transmit infection during funerals; 3) hospitalization of the case may trigger a contact
tracing investigation.

2.6.2 Community safe burial

The GMoH reports the daily number of total burials and of safe burials in the community [7]. We
computed the daily probability B(t) of being safely buried in the community as the ratio between safe
and total burials. For each day of the simulation t, every individual deceased at that time in the
community (i.e., who was not hospitalized) had a probability B(t) of being buried safely, thus preventing
transmission events during funerals (βb = 0).

2.6.3 Contact tracing investigation

The GMoH reports the daily number of contacts followed in contact tracing investigation [7], while the
number of new contacts followed each day is not available; indeed, the daily number of new contacts
listed for contact tracing is available, but this does not correspond to the number of contacts that were
actually followed due to poor compliance of the population (resistance etc.). Thus we compute a proxy
for the number of new contacts followed per case at day t, F (t), as the ratio between the total number
of followed contacts over the period [t, t+ 21) and the total number of cases over the same period. This
quantity suffers from two limitations: first, the denominator is the total number of cases instead of the
total number of cases admitted to hospital/ETU (both triggering contact tracing investigation) since
admission data are available for ETUs only; however, since we estimate the hospitalization rate in ETUs
to be ≈ 83%, the number of cases is a good proxy for the number of cases admitted either to an ETU or
to hospital. Second, we consider a period of 21 days because every contact was followed for that period,
but this procedure would imply a nearly constant number of new daily cases; however, the recorded
maximum number of weekly cases over the entire epidemic course was about 160, thus variation in the
number of cases over a 21-day period is not remarkable. The obtained indicator for the contact tracing
is significantly negative correlated to the number of observed cases (see discussion in the main text and
Fig. S3). We analyze whether this correlation holds also for alternative definitions of F . Specifically, we
tried by integrating over 7, 14, and 28 days period (instead of 21 days used as baseline). In all cases we
found a significant negative correlation (p < 0.001) between our indicator of the contact tracing and the
daily number of observed cases.

In [12] it has been estimated that the probability of identifying a case through contact tracing depends
linearly on the number of contacts followed; in particular, for instance, 11.5 traced contacts per case
correspond to about 30% detection probability. We use this information to derive from F (t) the daily
probability of following a contact, Φ(t). Therefore in our model, at each time step, for each individual
admitted either to hospital or to ETU, we sampled from a Bernoulli distribution of probability Φ(t) to
determine whether his household was followed or not. The same procedure was applied to each additional
household in his extended family network. Once an individual belonging to a household followed by
contact tracing became symptomatic, he was hospitalized on the same day of symptom onset (provided
that beds were available).
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Figure S3: Scatter plot of observed daily number of cases and daily number of traced contacts as
determined by equation F (t). Note that the same indicator of contact tracing is used also in the main
text.

3 Markov chain Monte Carlo calibration

Unlike [10], where the data points used for model calibration referred to an epidemic phase characterized
by an almost exponential growth rate because interventions were not very intensive, the dataset used
for model calibration in this study refers to a period where intensive interventions were ongoing. In
particular, each of the three interventions implemented mainly acts in reducing transmission in one specific
setting: ETUs reduce transmission in health care settings; community safe burials reduce transmission
at funerals; and contact tracing reduces transmission in households and extended family. Therefore, we
estimated the posterior distribution of all four unknown parameters of the model (which are all related
to Ebola transmissibility, namely βh, βb, βf , σ); the parameter vector is denoted by Θ. The prior
distributions of the four parameters are uniform in [0, 1000] for the transmission rates and in [0, 1] for σ.
The posterior distribution of Θ was explored by Markov chain Monte Carlo (MCMC) sampling applied
to the likelihood of the weekly number of cases among HCW (as reported to the Guinean Ministry of
Health) and in the general population in the entire country of Guinea (as reported in the patient database
of the WHO). Specifically, by assuming the number of cases among HCW and in the general population
to be Poisson distributed around the mean and independent for each time interval, we can write the total
likelihood as the product of two distinct likelihood functions, Lhcw and Lgp. In detail Lhcw is defined as
Lhcw =

∏n
i=1 P (wi(Θ); ki), n is the number of data points, P is the probability of observing ki events

from a Poisson distribution with mean wi(Θ), where ki is the observed number of cases among HCW
in time interval i, wi(Θ) is the estimated mean (computed over 50 simulations) number of cases among
HCW in time interval i from a candidate parameter vector Θ. We define Lgp analogously. Thus, no
spatial information is used in the computation of the likelihood.
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Figure S4: Estimated parameter values at each iteration of the MCMC algorithm.

Table S2: Estimates of transmission parameter.
Parameter mean (95% CI)
Transmission rate (day−1) in household, βf 1.340 (0.048–3.424)
Transmission rate (day−1) in hospital, βh 0.445 (0.200–0.754)
Transmission rate (day−1) at funeral, βb 3.070 (0.269–6.121)
Scaling factor for extended family, σ 0.155 (0.027–0.702)

Random-walk Metropolis-Hastings sampling is used to estimate Θ. In particular, the chain is initial-
ized by sampling each component of Θ from uniform distributions. Then, at each iteration, the likelihood
of a new candidate vector of parameters is evaluated and the candidate is either accepted or rejected
following the usual Metropolis-Hastings algorithm [17]. As simulations are stochastic, whenever new can-
didate vectors are not accepted 10 times in row, the likelihood of the current parameter set is re-evaluated
and the new likelihood accepted with probability 1 [18]. This ensures that the chain does not remain
trapped in a local maximum. The values of a new candidate parameter vector are randomly sampled
from a normal distribution with mean equal to the current transmission rate and variance ε2.

The four values of ε are chosen in such a way to guarantee a good acceptance rate. We perform
40,000 iterations and discard the first 10,000 iterations as a burn-in period. We check convergence by
considering several different starting points and by visual inspection (see Fig. S4). Moreover, for each
parameter we perform t-tests on its posterior distributions by sampling 100 random values over different
subsets of iterations (namely, 10,000 vs 20,000, 10,000 vs 30,000, and 20,000 vs 30,000); we found that
the obtained posterior distributions are not significantly different.
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Figure S5: A Weekly number of cases as reported in the data (WHO situation report - light grey, WHO
patient database - dark grey, Guinean Ministry of Health - darker grey) and estimated by the model
using the weekly cases reported to the Guinean Ministry of Health in the likelihood (mean - blue lines,
95%CI - light blue area). B Estimated fraction of transmission by setting as of February 25, 2015, in
the model where the weekly data reported in the WHO patient database (light blue) or the weekly data
reported to the Guinean Ministry of Health (blue) are used in the likelihood.

The reported mean values and confidence intervals are computed by running an independent stochastic
realization with the parameter vector of every tenth iteration of the 30,000 iterations of the MCMC
algorithm. The resulting set of 3,000 realizations thus reflects both the stochasticity of the model and
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Figure S6: A Weekly number of cases as reported in the data (WHO situation report - light grey, WHO
patient database - dark grey, Guinean Ministry of Health - darker grey) and estimated by the model
where βb is assumed equal to βf (mean - blue lines, 95%CI - light blue area). B Estimated fraction
of transmission by setting as of February 25, 2015, in the model where βb is estimated (light blue) and
where it is kept equal to the transmission rate in between household members (blue).
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of February 25, 2015, in the model assuming 80% reporting rate (light blue) and 100% reporting rate
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the uncertainty in model parameters estimates (whose values are reported in Tab. S2).
In addition, we performed three sensitivity analyses on model calibration. First, in the definition

of the likelihood, we substituted the number of weekly cases reported in the WHO Patient Database
with the number of weekly cases reported to the Guinean Ministry of Health. As shown in Fig. S5,
model estimates are consistent for these two alternative sources of data used in the definition of the
likelihood. Second, as in [10], we also performed an analysis assuming βb = βf , thus reducing the number
of parameters to be estimated through the MCMC procedure. As shown in Fig. S6, the model is still able
to capture the weekly number of cases, and the estimated mean fraction of cases by setting is similar to
the baseline scenario, although estimates are less variable in this new scenario with an additional model
constraint (Fig. S6). Third, we assume that only 80% of Ebola cases have been reported to the WHO.
The resulting estimated weekly number of cases follows the same temporal trend of the scenario assuming
reporting rate 100% (see Fig. S7A). Moreover, also the estimated fraction of cases by setting remains
quite consistent between the two scenarios (Fig. S7B).

4 Age-specific risk of infection

The number of Ebola cases reported to the WHO [14] is highly variable by age. As of February 22,
2015, the cumulative number of infections in individuals aged 15+ years is 2,557 (which is about 84%
of infections recorded until that date), despite this age group representing only about the 54% of the
population of Guinea. Such a peculiar pattern of the 2014–2015 Ebola epidemic could have been due to
different behaviors followed by individuals of different ages; for instance, it is more likely that adults take
care of sick individuals and thus have greater chance to come into contact with body fluids of infected
Ebola cases. A first approximation of such a complex phenomenon can be modeled by assuming an
age-specific risk of infection.

In order to estimate age-specific risk of infection, we developed a simple compartmental model. The
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set of ordinary differential equations regulating the compartmental model is

Ṡ1 = −δS1β

2∑
j=1

Ij + Yj
N

İ1 = δS1β

2∑
j=1

Ij + Yj
N

− 2γI1

Ẏ1 = 2γI1 − 2γY1

Ṙ1 = 2γY1

Ṡ2 = −S2β

2∑
j=1

Ij + Yj
N

İ2 = S2β
2∑
j=1

Ij + Yj
N

− 2γI2

Ẏ2 = 2γI2 − 2γY2

Ṙ2 = 2γY2

where

• Sj is the number of susceptible individuals belonging to age group j (age group 1 corresponds to
individuals ≤ 15 years old; age group 2 corresponds to individuals 15+ years old);

• Ij is the number of individuals belonging to age group j who are in the first infectious class. We
assume two classes for infectious individuals (I and Y ) in such a way that the resulting generation
time is Gamma-distributed;

• Yj is the number of individuals belonging to age group j who are in the second infectious class;

• Rj is the number of recovered individuals belonging to age group j;

• δ is the relative risk of infection of younger individuals (< 15 years old) with respect to adults (15+
years old);

• β is the transmission rate;

• γ is the rate of loss of infectiousness.

• N = N1 + N2 is the population size where N1 = 4, 676, 171 and N2 = 5, 381, 804 are the sizes of
the two age groups respectively.

The model has two free parameters, namely the transmission rate β and the relative risk of infection
of younger individuals. Parameters were estimated by exploring with MCMC the binomial likelihood
of the number of cases in the two different age groups up to October 10, 2014 (i.e. before incidence
flattens/decreases, possibly as a consequence of improved interventions) as reported in the WHO Situation
Reports [14]. This allows us to estimate the basic reproduction number observed in the early epidemic
phase.

Specifically, the likelihood was defined as:

L =

6∏
t=1

2∏
j=1

B(cj(t), Nj , pj(t))
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Figure S8: A Value of the transmission rate of the compartmental model for different iterations of the
MCMC algorithm. B Value of the relative risk of infection of the compartmental model for different
iterations of the MCMC algorithm. C Number of cases over time for children 0–14 years old and for
individuals 15+ years old as predicted by the compartmental model and as reported in the WHO situation
reports.

where index t = 1, . . . , 6 represents time steps, j = 1, 2 represents age groups, B(k, n, p) is the
probability mass function of a binomial distribution (i.e. the probability of observing k successes in n
experiments, each of which yields success with probability p), cj(t) is the number of cases observed at
time t in age group j, Nj is the size of age group j, and pj(t) is the fraction of new cases at time t in age
group j as estimated by the model.

A Metropolis-Hasting algorithm (1,000,000 iterations) with normal proposal distributions was used.
We check convergence by considering several different starting points and by visual inspection. Results
are reported in Fig S8. β was estimated to be 0.114 days−1 (95%CI: 0.111-0.117), δ was estimated to be
0.247 (95%CI: 0.212-0.283).

The basic reproduction number of the model is R0 = β
γ (δN1

N + N2

N ), as resulting from the next

generation matrix approach introduced in [19]. This yields to an estimated R0=1.176 (95%CI: 1.169–
1.184).

5 Heterogeneous transmissibility

A characteristic feature of the current Ebola epidemic in Guinea is the presence of heterogeneity in
transmissibility[20, 21], i.e., a small fraction of infected individuals is responsible for the large majority
of secondary cases. We analyzed data on the transmission chain of 152 infections in Guinea [21] by
fitting them with a negative binomial distribution (see Fig. S9). We found that the maximum likelihood
distribution has dispersion parameter k=0.20 (95%CI: 0.13-0.31), which is in very good agreement with
the result reported in [20].

Following the argument presented in [22], in our transmission model, which follows the classical
Poisson approach for transmission events, we modeled the negative binomial distribution as a Poisson
distribution where the mean transmission rate β̂ is multiplied by a gamma distribution with shape 0.2
(i.e., the dispersion parameter k of the estimated negative binomial distribution) and scale 4.78 (i.e.,
(1 − p)/p, where p is the probability of the estimated negative distribution, which can be computed as
k/(k + µ)).
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Figure S9: Probability distribution of the number of secondary cases as observed in [21] (red rectangles)
and from fitting a negative binomial distribution (orange line).

6 Reproduction number over time

To estimate the reproduction number of the model over time we assumed the the number of daily cases
C(t) as estimated by the model at time t can be approximated by a Poisson process:

C(t) ≈ Pois(Rt

t∑
s=1

Tg(s)C(t− s))

where Tg is the generation time distribution of the model (approximated by a Gamma distribution
of parameters shape 2.39 (SE: 0.014) and rate 0.13 (SE: 0.0008), see [10]), and Rt is the instantaneous
reproduction number at time t. The likelihood is therefore

L =

T∏
t=1

P (C(t), Rt

t∑
s=1

Tg(s)C(t− s))

where here P (k, λ) is the probability mass function of a Poisson distributions (i.e. the probability of
observing k events if these events occur with a known rate λ). For each simulated epidemic obtained
by running the calibrated model, Rt were estimated by maximum likelihood. Mean and 95% credible
intervals of Rt were obtained by analyzing the entire Markov chain.

7 Geographical spread

The geographical spread of the epidemic at the regional level is depicted in Fig. S10. All datapoints for all
regions, except Boke, fall inside the 95%CI of model predictions. The predicted trend in the cumulative
number of cases differs from those reported in the data for Labe, Mamou, and Boke regions, which had
observed a total of 7, 17, and 47 cases by February 25, 2015, respectively. Moreover, Mamou and Boke
data showed a fluctuating cumulative number of reported cases probably attributable to mis- and/or
under- reporting of cases. Together with the non-availability of complete information on the performed
interventions at a sub-national scale, this is the second reason why the model is calibrated on national
level data only.
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Figure S10: Cumulative number of cases (on the log10 scale) in the 8 Guinean regions as predicted by
the model (line: mean, shaded area: 95%CI) and as reported to the Guinean Ministry of Health (points).
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Figure S11: Cumulative attack rate (expressed in percentage) as of February 25, 2015 in the 8 Guinean
regions as predicted by the model (line: mean, shaded area: 95%CI) and as reported to the Guinean
Ministry of Health (points).

The analysis of cumulative attack rates confirms the results based on cumulative number of cases
(compare Fig. S11 with Fig. 1B in the main text). This is due to the relative homogeneity of the
population size of Guinea regions (ranging from about 0.7 million individuals in Mamou, up to 2 million
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individuals in Kankan).

8 Analysis of performed intervention measures

As expected, the cross-correlation between ETU admissions and Ebola cases data shows a highly signifi-
cant maximum at lag 0 days (Fig. S12A), while the community safe burial probability is not significantly
correlated with the number of reported cases for any lag, with the exception of a low correlation at very
long lags (i.e., over 35 days – see Fig. S12B) that has no clear biological interpretation.
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Figure S12: A Cross-correlation between the average number of cases admitted to ETU and the average
number of reported cases. A Cross-correlation between the average probability of being safely buried
in the community and the average number of reported cases. Bars exceeding the blue lines represent
statistically significant lags. All data used in this analysis are reported by the Guinean Ministry of
Health; averages are computed on a moving window of 15 days, i.e., one week previous and one week
following the data point) over time.
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9 Probability of disease elimination

The cumulative number of cases depending on the number of traced contacts per case, corresponding to
Fig. 5A in the main text, is shown in Fig. S13. In S14 we perform a sensitivity analysis on the vaccine
efficacy by considering VE=75% and 100%. We use the setting of a randomized trial with delayed rings
and with vaccine administered only to individuals 18+ years old.
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represent a situation comparable to what was observed in April 2015. The number of traced contacts
match the data until February 25, 2015; then it is assumed to be constant over time until the end of the
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