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Supplementary web appendix  

Web appendix I – Million Death Study research ethics 

The full protocol of the Million Death Study (MDS) is available at: 

http://www.cghr.org/project.htm. The MDS is conducted within the Registrar General of India’s 

Sample Registration System (SRS) [1], a large, routine demographic survey and the primary 

system for the collection of Indian fertility and mortality data since 1971. SRS enrolment is on a 

voluntary basis, and its confidentiality and consent procedures are defined as part of the 

Registration of Births and Deaths Act, 1969. Oral consent was obtained in the first SRS sample 

frame. The new SRS sample obtains written consent at the baseline. Families are free to 

withdraw from the study, but the compliance is close to 100%. The study poses no or minimal 

risks to enrolled subjects. All personal identifiers present in the raw data are anonymized before 

analysis. The study has been approved by the review boards of the Post-Graduate Institute of 

Medical Education and Research, the Indian Council of Medical Research, and the Health 

Ministry’s Screening Committee. Specific written consent procedures for additional biological 

measurements will be added, using international guidelines [2,3].   
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Web appendix II - Model structure  

We adapted DynaMICE (Dynamic Measles Immunization Calculation Engine), a 

compartmental model of measles transmission and vaccination stratified by age, which was first 

developed to study measles in high burden countries [1]. We reproduce in this web appendix, 

from Verguet et al. Vaccine 2015 [1], the main model equations from DynaMICE.  

The population in the model is categorized as: susceptible (S), infected (I), recovered (R), 

vaccinated susceptible (VS), vaccinated infected (VI), and vaccinated recovered (VR). Below 

are the differential equations used: 
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and the accompanying boundary conditions: 

𝑆 𝑡,𝑎 + 𝐼 𝑡,𝑎 + 𝑅 𝑡,𝑎 + 𝑉𝑆 𝑡,𝑎 + 𝑉𝐼 𝑡,𝑎 + 𝑉𝑅 𝑡,𝑎 = 𝑁(𝑡,𝑎) , 

𝑆 𝑡, 0 = 𝜈𝑁 𝑡, 0  . 

𝑡 is the time (in years), 𝑎 is the age (in years), and 𝑁 is the total population. 𝜅 𝑡, 𝑎  is the 

coverage of immunization for individuals vaccinated for the first time, through either routine 

immunization (MCV1) (where 𝑎 < 1) or through supplemental immunization activity (SIA) 

(where 𝑎 < 1). 𝜅! 𝑡, 𝑎  is the coverage of immunization for individuals vaccinated for the 

second time, through SIA only (where 𝑎 < 1). 𝜆 is the force of infection and depends on I and 

VI; 𝜈 is the birth rate in the population, 𝜇 𝑎  is the mortality rate at age 𝑎. 𝛾 is the infectiousness 
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period of measles;   𝜏  is the effectiveness of measles vaccine: 𝜏 = 0.85  for individuals 

vaccinated once through MCV1, 𝜏 = 0.95 for individuals vaccinated once through SIA, and 

𝜏 = 0.98 for individuals vaccinated twice.  

	
  
Figure  S1. Model of vaccine action. 

 

	
  
Source: Reproduced from Verguet et al. Vaccine 2015 [1]. Licensed under Creative Commons 
Attribution (CC BY-NC-ND 4.0). 
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Web appendix III – Parameter estimation 

 
1. Calibration of the model 

 

Figure S1 displays the variation in the oscillation period of estimated measles cases as the basic 

reproduction number and the amplitude of the forcing term vary in the model. 

Table S1 below displays the estimates of measles deaths we used in our estimation of case 

fatality risk (CFR), taken from Morris et al. [1]. 

 

Table S1. Under-five measles deaths estimates, for India, Bihar, and Uttar Pradesh used in our 
estimation procedure. 

 Estimated number of measles 
deaths (1-59 months) 

99% confidence interval 

India 92,000 63,200 to 137,200 
Bihar 10,600 6,400 to 18,200 

Uttar Pradesh 35,300 26,400 to 47,200 
Source: Morris et al. [1]. 
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Figure S1. Variation in the oscillation period of estimated measles cases as the basic 
reproduction number R0 was varied between 10 and 25 and the amplitude of the forcing term a0 
(e.g. Amplitude) was varied between 0 and 0·5 in the model. 
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2. Coherence analysis of the measles deaths data and measles cases estimated by the 
model. 
 
 

To compare the correlation or association in frequency 𝑓 (or period) between two time series, 

we used the magnitude-squared coherence or coherence defined as: 

 

𝐶!" 𝑓 = !!" ! !

!!! ! !!! !
 ,  (1) 

 

where 𝐺!" 𝑓  is the cross-spectral density between time series 𝑥 and 𝑦, and 𝐺!! 𝑓  and 𝐺!! 𝑓  

are the auto-spectral densities of 𝑥 and 𝑦, respectively. When there is no relationship between 𝑥 

and 𝑦 for a given 𝑓 then 𝐶!" 𝑓 = 0. The significance of size 𝛼 (e.g. 𝛼 = 0.05) is given as: 

 

𝐶! = 1− 𝛼! !!! ,  (2) 

   

where 𝐶! is the coherence and  𝑛 is the number of degrees of freedom dependent on the number 

of realizations for 𝑥 and 𝑦 [2]. (2) was derived assuming normally distributed data in close 

agreement with a Monte Carlo approach [3].  

To be reliable and interpretable, coherence functions (1) must be smoothed across either 

multiple sub-averages or adjacent frequencies (or both). Yet, there are trade-offs: the more 

smoothed the more reliable the coherence function, but increasing smoothing reduces spectral 

resolution. A small number of frequencies were investigated (five, between 0·50 and 1·50 

years) hence a minimal amount of smoothing (moving average of two weeks) was retained to 

maintain good spectral resolution.  
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Each combination (R0; a0) was simulated until equilibrium was reached. To compare the 

coherence of two time series, the two times series must overlap the same time period (3 years) 

and present the same time step (1 week). Thus, the model outputs were converted into weekly 

measles cases, from which 𝑛 = 1000 time series of three-year length each were randomly 

extracted (to ensure that all dynamics were captured). Then, 𝑛  coherence functions were 

estimated using the R package “spectrum” and the top 10% coherent simulated time series of 

measles cases were selected.  

For five periods (0·50, 0·60, 0·75, 1·00, and 1·50 years) selected from the spectral analysis of 

the original measles mortality data time series (figure 1 in the main text), we plotted (figure S2) 

the coherence estimated for each (R0; a0) value against that of the equivalent estimated case 

fatality risk (CFR) among under-five children expressed in %. Each (R0; a0) yielded an 

estimated number of measles cases among under-fives which was subsequently compared to the 

total number of measles under-five deaths as procured by Morris and colleagues [1] for India as 

a whole and Indian states in 2005, to derive a CFR estimate.  

Finally, to obtain the calibrated (R0; a0) and a subsequent CFR estimate, we used the pooled 

coherence methodology of Amjad et al. [4]. This method combines several independent 

coherence estimates into a single representative estimate. We used it to combine the results 

from the different periods yielded by the spectral analysis (figure 1 in the main text) of the 

original measles mortality time series. We recorded the range of CFRs produced from 

coherence estimates that were significant and the CFRs with the corresponding greatest 

coherence. We sampled (n = 10,000) the distribution of modeled cases, with replacement, using 

the probability of the corresponding coherence level (i.e. case estimates from a (R0; a0) 

combination that had a coherence value of 0·8 would have twice the probability of being 

sampled than with a coherence of 0·4). This allowed us to produce a distribution of cases. We 
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then combined this distribution of cases with the distribution of under-five deaths during the 

same time period (given by Morris et al. [1]; table S1) to finally produce a distribution of the 

CFR for each region (see figures S4, S7 and S10 below). 

To use the pooled coherence methodology, we produced coherence estimates across the five 

periods/frequencies of interest and then pooled them by summing across the range of 

frequencies before estimating the magnitude of the coherence: 

   

𝐶!" 𝑓 =
!!!!! ! !"

!
!!!

!

!!!!! ! !"
!
!!! !!!!! ! !"

!
!!!

 , (3) 

 

where we summed across k realizations and df was the number of degrees of freedom in the 

spectral estimate. Maitaining the assumption of independence the upper 95% confidence limit 

between the number of realizations was given by: 

 

 𝐶! = 1− 0.05
!
!"!! ,   (4)  

 

where 𝑑𝑓  was the total number of degrees of freedom in the pooled coherence estimate. The 

highest pooled coherence was estimated at 0·67 and yielded both a CFR estimate of 0·66% 

(95% CI: 0·47-0·94) (figure S3) and estimated values for (R0; a0) (figure S4). 

Similarly, detailed results are displayed for Bihar (figures S5, S6, and S7) where the highest 

pooled coherence was estimated at 0·87, and for Uttar Pradesh (figures S8, S9 and S10) where 

the highest pooled coherence was also estimated at 0·62. 

One challenge in our analysis is whether a three-year time series of measles deaths (i.e. from the 

Million Death Study data) contains sufficient information to recover R0 and a0 of the underlying 
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infection process. To validate the ability of the pooled coherence procedure to estimate R0 and 

a0 parameters over a three-year window, we ran the model for a given (R0; a0) combination and 

took three hundred three-year time series from that simulation. We then looked at the maximum 

coherence estimates for each of the three hundred samples, calculated using the procedure 

described above, noting the (R0; a0) combination at the maximum. The distribution of (R0; a0) 

parameters produced could then be used to validate the procedure; ideally, we would find that 

the mean of this distribution is close to the true value of R0 and a0.   

The 300 3-year time series were created by adding stochasticity to the deterministic model, in 

order to capture noise due to errors in the observation/measurement process. The detailed 

process was as follows: 

(i) Take the time series of number of cases each week over the 3 years from the deterministic 

model. 

(ii) Simulate a time series of number of deaths each week by sampling from the distribution 

Bin(n,p) where p=1% (the assumed case-fatality risk) and n=number of cases in that week. 

(iii) Add further noise to this time series of deaths by adding to each week a random number 

sampled from a uniform distribution U(0,m), with the value of m estimated below. 

To estimate the parameter m in the uniform distribution U(0,m) we estimated the magnitude of 

noise we were seeing in the Indian (Million Death Study, MDS) data we fit the original model 

to: 

(i) Generate a time series of measles cases from our SIR model using values of R0 and a0 with 

the highest coherence to MDS data (as described in our manuscript). 

(ii) Convert this to the number of deaths by applying a case-fatality risk of 1%. 

(iii) Scale the number of deaths in this time series to match an “MDS data set” by multiplying it 

by the ratio of the deaths in the MDS sample with the number predicted for the whole of 
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India in Morris et al [1]. We used the Morris et al. paper because this study used exactly 

the same MDS time series to estimate the number of measles cases in India during that 

time period. 

(iv) Calculate the residuals, i.e. the difference between our scaled time series of deaths with the 

actual number of deaths each week in the MDS time series. 

Using this process, we calculated that the average residual was 3,531 with a range of 0-19,897. 

Hence we sampled noise from a uniform distribution U(0,5000) which is roughly equivalent. 

Just to test our method to the limits, we also generated a time series with noise sampled from 

U(0,20000) instead. The results are shown in Figure S11 below. 

Note that the raw MDS data were filtered to detrend the data using a Baxter King filter (bkfilter 

in R). This process has the effect of removing much of the noise at frequencies with small 

periods (<1 month) which are highly unlikely to be relevant to measles transmission, but does 

not affect the periods we were interested in (> 6 months).  

With the noise term sampled from U(0,5000), we obtain R0 of 17.0 (95% interval 14.0-18.1) 

and a0 of 0.26 (0.12-0.41). With the noise term sampled from U(0,20000), we obtain R0 of 

17.04 (13.4-19.5) and a0 of 0.25 (0.04-0.46) (Figure S12). This compares with the original R0 of 

16.7 (95% Interval: 14.6-18.6) and a0 of 0.27 (95% Interval 0.14-0.41). Hence we find that 

adding uniform noise increases the uncertainty intervals around the estimates of R0 and a0 but 

does not have much effect on the central estimate. We show in Figure S13, that with the 

addition of uniform noise, there is little effect on the underlying harmonics.  

Clearly there are ways to add noise so that it becomes difficult to estimate the underlying 

periodicity of the data. We could add uniform noise of such great magnitude that the underlying 

periodicity (the signal) is swamped by the noise; it would then be difficult to pick up any 

meaningful periodicity at all. We could add noise with its own periodicity or a truncated pulse 
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of noise, such as seasonal reporting of cases/deaths, or data sampling of different efforts at 

varying periods. The spectral analysis of these time series would then pick up subharmonics in 

addition to the underlying periodicity. This is not surprising and would merely show that the 

method is working as intended, i.e. picking up periodic series without making any judgment 

about their origin. 

As this paper was drawing from the MDS which has a high quality of reporting, we believe that 

MDS measles mortality data present less reporting biases and thus smaller noise, which enables 

the use of our method.  
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Figure S2. Estimated coherence plotted against estimated case fatality risk (CFR) for India, for 
each selected period (0·5, 0·6, 0·75, 1·0, 1·5 year). The green lines delimit the range at which 
the coherence values are 95% significant for the CFR (also indicated in the legend). The red line 
indicates the upper 95% significance limit for the coherence function.  
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Figure S3. Pooled coherence across five periods (0·5, 0·6, 0·75, 1·0, 1·5 year) plotted against 
estimated case fatality risk (CFR) for India. The left and right green lines delimit the range at 
which the coherence values are 95% significant (0·47 and 0·95%) for the CFR. The middle 
green line indicates the CFR (0·66%) for which the highest pooled coherence was estimated. 
The red line indicates the upper 95% significance limit for the coherence estimate. 
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Figure S4. Pooled coherence estimate across five periods (0·5, 0·6, 0·75, 1·0, 1·5 year) and 
total cases over three-year period for India plotted against estimated basic reproduction number 
(R0) and amplitude of the forcing term (a0). The asterisk (*) denotes the location of the 
maximum combined coherence. Distributions of estimated measles cases and deaths [1] and 
resultant estimated case fatality risk (CFR) (0.63; CI: 0.40-1.0). 
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Figure S5. Estimated coherence plotted against estimated case fatality risk (CFR) for Bihar, for 
each selected period (0·5, 0·6, 0·75, 1·0, 1·5 year). The green lines delimit the range at which 
the coherence estimate is significant at the 95% level for the CFR (also indicated in the legend). 
The red line indicates the upper 95% significance limit for the coherence function. 
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Figure S6. Pooled coherence across five periods (0·5, 0·6, 0·75, 1·0, 1·5 year) plotted against 
estimated case fatality risk (CFR) for Bihar. The left and right green lines delimit the range at 
which the coherence values are 95% significant (0·48 and 0·87%) for the CFR. The middle 
green line indicates the CFR (0·67%) for which the highest pooled coherence was estimated. 
The red line indicates the upper 95% significance limit for the coherence estimate. 
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Figure S7. Pooled coherence estimate across five periods (0·5, 0·6, 0·75, 1·0, 1·5 year) and 
total cases over a three-year period for Bihar plotted against estimated basic reproduction 
number (R0) and amplitude of the forcing term (a0). The asterisk denotes location of the 
maximum pooled coherence. Distributions of estimated measles cases and deaths [1] and the 
resultant estimated case fatality risk (CFR) (0·70 CI: 0·46-1·06). 
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Figure S8. Estimated coherence plotted against estimated case fatality risk (CFR) for Uttar 
Pradesh, for each selected period (0·5, 0·6, 0·75, 1·0, 1·5 year). The green lines delimit the 95% 
confidence intervals for the CFR (also indicated in the legend). The red line indicates the upper 
95% significance limit for the coherence function. 
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Figure S9. Pooled coherence across five periods (0·5, 0·6, 0·75, 1·0, 1·5 year) plotted against 
estimated case fatality risk (CFR) for Uttar Pradesh. The left and right green lines delimit the 
range at which the coherence values are 95% significant (0·94 and 1·76%) for the CFR. The 
middle green line indicates the CFR (1·14%) for which the highest pooled coherence was 
estimated. The red line indicates the upper 95% significance limit for the coherence estimate. 
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Figure S10. Pooled coherence estimate across five periods (0·5, 0·6, 0·75, 1·0, 1·5 year) and 
total cases over three-year period for UP plotted against estimated basic reproduction number 
(R0) and amplitude of the forcing term (a0). The asterisk (*) denotes the location of the 
maximum combined coherence. Distributions of estimated measles cases and deaths [1] and the 
resultant estimated case fatality risk (CFR) (1·19 CI: 0·80-1·76). 
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Figure S11. One of the 300 three-year sample time series of estimated deaths with added noise 
from either U(0,5000) (a) or U(0,20000) (b), respectively. Red line represents the data after 
Baxter-King filter. 
 
(a)       (b) 
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Figure S12. The distribution of estimates of R0 and a0 (Amp), in left and right columns 
respectively, with added noise from either U(0,5000) (a) or U(0,20000) (b), respectively. 
	
  
(a)  

 
(b) 
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Figure S13. Frequency spectra showing longest five periods used in the analysis (from 6 
months to 18 months), with normalized harmonic strength for comparison, of: the Million 
Death Study data (green), U(0,5000) (red) and U(0,20000) (blue).  
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3. Dynamics of the model, pre- and post-vaccine equilibria 
 
Figure S14 displays the dynamics of the model in India, Bihar, and Uttar Pradesh including the 
model outputs evolution to reach pre- and post-vaccine equilibria. 
 
 
Figure S14. Time series of model outputs to reach the pre- and post-vaccine equilibrium, 
demonstrating the dynamics of the model in India, Bihar and Uttar Pradesh (UP) under two (R0; 
a0) combinations with high and low coherence (Coh) values respectively. 
A, B and C plots are Bihar, India and UP respectively; 1 and 2 are high and low coherence 
respectively (Coh > 0.6, or Coh < 0.2). The black line represents the “Susceptibles”; the red line 
represents the “Infected”; the green line represents the “Recovered;” and the blue line represents 
the “Vaccinated”. Vaccination was introduced at Year 50.  
	
  
A1)     Bihar R0 =20; a0=0.1; Coh=0.62  A2) Bihar R0 =17; a0=0.3; Coh=0.2 

	
   	
  
B1)	
   India	
  R0	
  =24;	
  a0=0.15;	
  Coh=0.64	
   	
   B2)	
   India	
  R0	
  =17;	
  a0=0.25;	
  Coh=0.15	
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C1)	
  	
  	
  	
  UP	
  R0	
  =13;	
  a0=0.15;	
  Coh=0.6	
   	
   	
   C2)	
  	
  UPR0	
  =16;	
  a0=0.35;	
  Coh=0.2	
  

	
  
	
  
	
  
	
  
4. Use of World Health Organization measles reported cases 

	
  
The World Health Organization (WHO) provides a measles notification time series with annual 

numbers of reported cases over 1980-2015 (36 years of data) for India as a whole. Conducting 

the same analysis (starting with the Fourier analysis on the WHO data), calculating the 

coherence between the estimated spectral density (Figure S15.A) and those produced by the 

model produced a CFR estimate of 0.57 (95% CI: 0.54-0.84) (Figure S15.B) for India, which is 

a lower prediction but overlaps with the CFR from the three-year Million Death Study data. For 

this analysis we used all periods, as even though the smallest harmonics of the Fourier analysis 

were seen for periods below 5 years, these were the periods of previously seen measles cycles.   

Though the data stretches over 36 years, there are far fewer data points in this time series (since 

only one data point per year is available) and this limits the possible periods identifiable in the 

Fourier analysis, the minimum period being 2 years (twice the sampling frequency) from an 

annual dataset, and the largest period being 18 years. With fewer data we can note there are 

fewer coherent matches and many are below being significant (Figure S15). Therefore for this 
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procedure to work or at least to identify periods shorter than biennial, we need time series data 

that is preferrably on a weekly or monthly time scale.  

 

Figure S15. (A) Spectral density of WHO measles reported cases data for India (1980-2015), 
showing 16 periods from 2 years to 18 years. (B) Pooled coherence against calculated case 
fatality risk (CFR), demonstrating only a fraction of R0 and a0 combinations provided 
significant coherence estimates. The red line indicates the upper 95% significance limit for the 
coherence estimate.  
(A)        (B) 
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