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This is a supplementary document describing mathematical details and analytical derivations used for our

results presented in the main text and parameter estimation. In section 1, we present our mathematical model

which describes the dynamics of PrEP use in MSM population when considering the transmission and acquisition

of drug resistance. It is followed by sections of health and economic outcomes. How the parameters are chosen

or estimated is given in section 4. In section 5, we provide more tables and figures to support the results in the

main text.
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1 Model formulation

We extended our previously developed model [1, 2] by considering the use of PrEP among male homosexual

population in San Francisco which is decomposed into twelve categories (see Figure 1(a) in the main text and

Appendix Figure 1): susceptible individuals without PrEP (S) and with PrEP (P ), untreated individuals

infected with drug-sensitive strains at the primary stage (IUs1), chronic stage (IUs2) and AIDS stage (IUs3), un-

treated drug-resistant cases at the primary stage (IUr1), chronic stage (IUr2) and AIDS stage (IUr3), individuals

treated with combination antiretroviral therapy (ART) but did not develop drug resistance (ITs1) and those who

have entered the AIDS stage (ITs2), and ART-treated individuals with drug resistance before the AIDS stage

(ITr1) and at the AIDS stage (ITr2). The variable’s subscript identifies whether the infection is drug-sensitive (s)

or drug-resistant (r); the superscript specifies whether the individuals are treated with ART (T ) or untreated

(U).

Denote the duration of the primary, chronic, AIDS stage for untreated drug-sensitive individuals as ap, dc, dA,

and assume untreated drug-resistant individuals have a longer chronic stage dr(≥ dc) due to weaker viral

replication capacity (lower viral load in the absence of drug pressure) and thus a longer life expectancy [3, 4].

We assume that the duration of the primary and AIDS stages did not differ with or without treatment and

resistance, as in [1,5]. Let AU
s (= ap+dc), A

U
r (= ap+dr), A

T
s , A

T
r and DU

s (= AU
s +dA), D

U
r (= AU

r +dA), D
T
s , D

T
r

be the time when the AIDS stage starts and the infected individual dies because of AIDS for untreated drug-

sensitive, untreated drug-resistant, treated drug-sensitive and treated drug-resistant individuals, respectively.

Assume that treatment starts at time aART after infection irrespective of being infected with sensitive or

resistant strains. Uninfected individuals are recruited into the susceptible population at a positive constant rate

b. People exit the sexually-active population at a positive constant rate m due to behavior changes. The infected

individuals at the chronic stage are assumed to receive antiviral treatment with a rate η = 1/(aART − ap) (For

example, if all infected individuals are treated at an annual rate of 50%, then the average interval between

infection and ART initiation is 2 years [6]). The parameter fr is the fraction of treated individuals who develop

drug resistance and we assume that all of these drug-resistant cases use second-line drugs. Let t denote time

and a denote the infection age. We assume that all of the infected individuals with the same infection age are

homogeneous and have the same rates.

Let iUqj(a, t), i
T
q1(a, t) and iTq2(a, t) (where j = 1, 2, 3 and q ∈ {s, r}) be the respective density of infected

individuals in IUqj , I
T
q1 and ITq2 classes at time t and infection age a. It follows that

IUq1(t) =

∫ ap

0

iUq1(a, t)da, I
U
q2(t) =

∫ AU
q

ap

iUq2(a, t)da, I
U
q3(t) =

∫ DU
q

AU
q

iUq3(a, t)da,

ITq1(t) =

∫ AT
q

aART

iTq1(a, t)da, I
T
q2(t) =

∫ DT
q

AT
q

iTq2(a, t)da, q ∈ {s, r},
(1)

are the number of infected individuals in IUqj , I
T
q1 and ITq2 classes (j = 1, 2, 3 and q ∈ {s, r}), respectively, at time

t ≥ 0. We denote the disease-induced mortality rates in the classes IUs2, I
U
r2, I

T
s1, I

T
r1 and AIDS classes (including

IUs3, I
U
r3, I

T
s2, I

T
r2) as µ

U
s , µ

U
r , µ

T
s , µ

T
r and µA, respectively.

The probability that an infected individual in the IUqj , I
T
q1 and ITq2 class (where j = 1, 2, 3 and q ∈ {s, r}) still
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stays in the original class at infection age a [1] is given by

σU
q1(a) = e−

∫ a
0
(m+δ1)ds, a ∈ [0, ap], q ∈ {s, r},

σU
q2(a) = e

−
∫ a
ap

(m+µU
q +δUq +η)ds

, a ∈ [ap, A
U
q ], q ∈ {s, r},

σU
q3(a) = e

−
∫ a
AU

q
(m+µA)ds

, a ∈ [AU
q , D

U
q ], q ∈ {s, r},

σT
q1(a) = e

−
∫ a
aART

(m+µT
q +δTq )ds

, a ∈ [aART , A
T
q ], q ∈ {s, r},

σT
q2(a) = e

−
∫ a
AT

q
(m+µA)ds

, a ∈ [AT
q , D

T
q ], q ∈ {s, r},

(2)

where δ1 is the progression rate to the chronic stage and δUq , δ
T
q (q ∈ {s, r}) are the progression rates to the

AIDS stage for untreated and treated individuals, respectively.

Let Fq be the fraction of the untreated population that receives treatment [3]. It is given by

Fq =
η

m+ µU
q + δUq + η

, q ∈ {s, r}. (3)

Denote the transmission rate at the primary stage, chronic stage and AIDS stage for untreated drug-sensitive

and drug-resistant individuals as βp
s , β

U
s , βA

s , and βp
r , β

U
r , βA

r , respectively. The transmission rate of a treated

drug-sensitive (βT
s ) or drug-resistant (βT

r ) case is the infectivity of an untreated individual (β) multiplied by

a constant, i.e., βT
s = αsβ

U
s and βT

r = αrβ
U
s where αs ≤ αr, i.e., the second-line drug effectiveness 1 − αr is

assumed to be lower than the first-line drug effectiveness 1− αs (see Appendix Figures 4-5 in [2]) due to lower

adherence [7].

Patients starting ART with higher baseline CD4 counts had longer life expectancies [5,8–11]. The relationship

between prior-treatment CD4+ count and infection age shown in Fig. 1(B) in [12] also suggested that a higher

CD4+ count corresponded to an earlier infection stage. Thus, the earlier ART starts, the longer the patient is

expected to live and vice versa. Similar to the assumption in [5], we assume that the duration from treatment

initiation to death for treated individuals is a linear decreasing function of ART initiation timing aART as

follows (see Appendix Figure 3 in [2]):

LT
q = L0

q − ξTq aART , q ∈ {s, r}, (4)

where L0
q is the average maximum expectancies for those who are treated immediately after infection (i.e.,aART =

0) and ξTq is the slope. Therefore, we have

DT
q = aART + LT

q , A
T
q = DT

q − dA, q ∈ {s, r}. (5)

We assumed the PrEP effectiveness against drug-sensitive strains (defined as the reduction in susceptibility to

HIV infection upon exposure to an HIV-infected drug-sensitive partner) was ϵs. We defined PrEP effectiveness

to represent the product of PrEP’s biomedical efficacy and PrEP adherence. We assumed PrEP effectiveness

against resistant strains was ϵr = δrϵs (δr is defined as relative effectiveness of PrEP, i.e., the ratio of PrEP

effectiveness against drug-resistant strains ϵr relative to drug-sensitive strains ϵs) [13–15].

We develop the complete dynamical model as follows

3



BMC Medicine



dS(t)

dt
= b−mS(t)− S(t)

N(t)

∑
q∈{s,r}

(∫ ap

0

βp
q i

U
q1(a, t)da+

∫ AU
q

ap

βU
q iUq2(a, t)da+

∫ DU
q

AU
q

βA
q i

U
q3(a, t)da

+

∫ AT
q

aART

βT
q i

T
q1(a, t)da+

∫ DT
q

AT
q

βA
q i

T
q2(a, t)da

)
,

dP (t)

dt
= ξS(t)− wP (t)−mP (t)− P (t)

N(t)

∑
q∈{s,r}

(1− ϵq)

[∫ ap

0

βp
q i

U
q1(a, t)da+

∫ AU
q

ap

βU
q iUq2(a, t)da

+

∫ DU
q

AU
q

βA
q i

U
q3(a, t)da+

∫ AT
q

aART

βT
q i

T
q1(a, t)da+

∫ DT
q

AT
q

βA
q i

T
q2(a, t)da

]
,

∂iUq1(a, t)

∂t
+

∂iUq1(a, t)

∂a
= −(m+ δ1)i

U
q1(a, t), 0 < a ≤ ap, q ∈ {s, r},

∂iUq2(a, t)

∂t
+

∂iUq2(a, t)

∂a
= −(m+ µU

q + δUq + η)iUq2(a, t), ap < a ≤ AU
q , q ∈ {s, r},

∂iUq3(a, t)

∂t
+

∂iUq3(a, t)

∂a
= −(m+ µA)i

U
q3(a, t), AU

q < a ≤ DU
q , q ∈ {s, r},

∂iTq1(a, t)

∂t
+

∂iTq1(a, t)

∂a
= −(m+ µT

q + δTq )i
T
q1(a, t), aART < a ≤ AT

q , q ∈ {s, r},

∂iTq2(a, t)

∂t
+

∂iTq2(a, t)

∂a
= −(m+ µA)i

T
q2(a, t), AT

q < a ≤ DT
q , q ∈ {s, r},

iUq1(0, t) =
S(t) + (1− ϵq)P (t)

N(t)

(∫ ap

0

βp
q i

U
q1(a, t)da+

∫ AU
q

ap

βU
q iUq2(a, t)da+

∫ DU
q

AU
q

βA
q i

U
q3(a, t)da

+

∫ AT
q

aART

βT
q i

T
q1(a, t)da+

∫ DT
q

AT
q

βA
q i

T
q2(a, t)da

)
, q ∈ {s, r},

iUq2(ap, t) =

∫ ap

0

δ1i
U
q1(a, t)da, q ∈ {s, r},

iUq3(A
U
q , t) =

∫ AU
q

ap

δUq i
U
q2(a, t)da, q ∈ {s, r},

iTs1(aART , t) = (1− fr)

∫ AU
s

ap

ηiUs2(a, t)da,

iTr1(aART , t) = fr

∫ AU
s

ap

ηiUs2(a, t)da+

∫ AU
r

ap

ηiUr2(a, t)da,

iTq2(A
T
q , t) =

∫ AT
q

aART

δTq i
T
q1(a, t)da, q ∈ {s, r},

S(0) = S0 ≥ 0, iUqj(a, 0) = iUqj0(a), j = 1, 2, 3, q ∈ {s, r}; iTq1(a, 0) = iTq10(a), i
T
q2(a, 0) = iTq20(a), q ∈ {s, r}.

(6)

where iUq10(a) ∈ L1
+(0, ap), i

U
q20(a) ∈ L1

+(ap, A
U
q ), i

U
q30(a) ∈ L1

+(A
U
q , D

U
q ), i

T
q10(a) ∈ L1

+(aART , A
T
q ), i

T
q20(a) ∈

L1
+(A

T
q , D

T
q ), q ∈ {s, r}. Here L1

+ is the space of functions that are nonnegative and Lebesgue integrable over

the specified interval.

The number of persons living with HIV/AIDS at any time t is given by

Itotal(t) =
∑

q∈{s,r}

 3∑
j=1

IUqj(t) + ITq1(t) + ITq2(t)

 . (7)

The total population size at any time t is given by

N(t) = S(t) + P (t) + Itotal(t). (8)
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The PrEP coverage among susceptible MSM population among any time t is given by

PrEP coverage(t) =
P (t)

S(t) + P (t)
. (9)

Notice that we keep track of the numbers of newly diagnosed AIDS cases and AIDS deaths at time t using

the following equations:

Cases(t) =
∑

q∈{s,r}

(∫ AU
q

ap

δUq i
U
q2(a, t)da+

∫ AT
q

aART

δTq i
T
q1(a, t)da

)
,

Deaths(t) =
∑

q∈{s,r}

(∫ DU
q

AU
q

µAi
U
q3(a, t)da+

∫ DT
q

AT
q

µAi
T
q2(a, t)da

)
.

(10)

There are two ways to model the development of drug resistance. The first way is to model the progression

of untreated −→ treated sensitive −→ treated resistant. The second is to model the consequence of treatment,

assuming that if resistance is acquired then it happens fast enough such that amongst those who develop

resistance, it is not important to consider that they move through a treated sensitive state. In this formulation,

a fraction of treated patients will develop drug resistance after ART treatment and a fraction won’t. In this

paper, we adopted the second choice. We did this because it allows us to assume that a fraction (fr) of treated

individuals will acquire drug resistance, as shown in Figure 1(a) in the main text and Appendix Figure

1. With the first method, drug resistance is developed at a certain rate, and the proportion whoever develop

drug resistance would also depend on other rates of the model, making it more difficult to match the model to

available data.

A second advantage of using the second method is that we can track the timing of ART administration easily

for both treated drug-sensitive and drug-resistant individuals using our infection-age-structured model. We used

the same modeling approach in our earlier work [2] and adapt the parameter estimates from that paper here. If

we adopt first approach (a rate of acquiring drug resistance post-treatment), it would be hard to determine the

time at which drug-resistant people initiate treatment because, while the time at which drug-sensitive people

develop drug resistance would vary substantially, there would be no way to track this in the model. It also

follows from the sensitivity analysis (Figure 5 in the main text and Appendix Figures 4-7) that the fraction

(fr) of acquired drug resistance has a very minor effect on ICER. Thus, we believe either modeling approach

would lead to similar cost-effectiveness estimates though the one we chose makes other assumptions of our model

easier to execute.

2 Health outcomes: New infections, prevalence and the fraction of

new infections that are drug resistant

2.1 New infections

The (undiscounted) cumulative number of total new HIV infections that occur in the entire population over the

time horizon T (T = 20 years in this paper, i.e., from 2018 to 2038) is calculated by

Total new infecions over T years =

∫ T

0

(iUs1(0, t) + iUr1(0, t))dt, (11)
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and the cumulative number of new drug-resistant infections over T years is calculated by

New drug-resistant infecions over T years =

∫ T

0

iUr1(0, t)dt, (12)

where iUq1(0, t), q ∈ {s, r} is the new infections at time t shown in Eq. (6).

2.2 Prevalence

The HIV prevalence at any time t is given by

Prevalence(t) =
Itotal(t)

N(t)
, (13)

where Itotal(t) and N(t) are given by Eqs. (7) and (8) respectively.

2.3 The fraction of new infections that are drug resistant

The prevalence of transmitted drug resistance (TDR) among newly infected individuals (the fraction of new

infections that are drug resistant) at any time t is given by

TDR(t) =
iUr1(0, t)

iUs1(0, t) + iUr1(0, t)
, (14)

where iUq1(0, t), q ∈ {s, r} is the new infections at time t shown in Eq. (6).

3 Economic outcomes: QALYs, Costs, and ICERs

3.1 QALYs

Denote the quality of life of classes S, P, IUqj , I
T
q1, I

T
q2, q ∈ {s, r}; j = 1, 2, 3 as QS , QP , Q

U
qj , Q

T
q1, Q

T
q2, and the life

discount rate as r̄ (see Appendix Table 1), then we have the total health benefits for the entire population

measured in discounted quality-adjusted life years (QALYs) during the intervention duration T (see [16,17]):

QALY s =

∫ T

0

e−r̄t

QSS(t) +QPP (t) +
∑

q∈{s,r}

 3∑
j=1

QU
qjI

U
qj(t) +QT

q1I
T
q1(t) +QT

q2I
T
q2(t)

 dt, (15)

where IUqj(t), I
T
q1(t), I

T
q2(t), q ∈ {s, r}; j = 1, 2, 3 are given by Eq. (1). Here we assume that quality of life for

drug-resistant individuals decreases by 5% relative to drug-sensitive individuals at the same stage [18, 19], i.e.,

QU
rj = 0.95QU

sj ; j = 1, 2, 3, QT
r1 = 0.95QT

s1, and QT
r2 = 0.95QT

s2.

3.2 Costs

Denote annual costs of PrEP as cP , and annual HIV-related health care costs (exclude ART costs) for classes

IUqj , I
T
q1, I

T
q2, q ∈ {s, r}; j = 1, 2, 3 as cUqj , c

T
q1, c

T
q2, q ∈ {s, r}; j = 1, 2, 3. Here, we assume the HIV-related health

care costs for drug-sensitive individuals are the same as these for drug-resistant individuals, i.e., cUsj = cUrj ; j =

1, 2, 3, cTs1 = cTr1, and cTs2 = cTr2. Let annual costs of ART (first-line drugs) for treated drug-sensitive individuals

be cART
s and annual costs of second-line drugs for treated drug-resistant cases be cART

r (here we assume all

drug-resistant individuals use second-line drugs). Assume ART was immediately following diagnosis so that the

6
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test rate ϕ can be obtained as ϕ = 1/aART . For uninfected individuals, the total costs of testing (antibody

test) and counseling are denoted as cneg. For infected individuals, the total costs of testing (antibody test) and

counseling are denoted as cpos, and the costs of diagnosis is denoted as cdiag. Denote the costs of genotype

resistance test as cGT . See Appendix Table 1 for these costs. The cost discount rate is assumed as r. Then

we calculate the total discounted costs for the entire population as the sum of annual health care costs for all

individuals over the intervention’s duration T as follows (see [16,17]):

Costs = CHC + CPrEP + CFirst line
ART + CSecond line

ART + CTC + CDiag + CGT , (16)

where

CHC =

∫ T

0

e−rt
∑

q∈{s,r}

(
3∑

j=1

cUqjI
U
qj(t) + cTq1I

T
q1(t) + cTq2I

T
q2(t)

)
dt,

CPrEP =

∫ T

0

e−rtcPP (t)dt,

CFirst line
ART =

∫ T

0

e−rtcART
s (ITs1(t) + ITs2(t))dt,

CSecond line
ART =

∫ T

0

e−rtcART
r (ITr1(t) + ITr2(t))dt,

CTC =

∫ T

0

e−rt

(
cnegϕS(t) + cposϕ

∑
q∈{s,r}

3∑
j=1

IUqj(t)

)
dt,

CDiag =

∫ T

0

e−rtcdiagϕ
∑

q∈{s,r}

3∑
j=1

IUqj(t)dt,

CGT =

∫ T

0

e−rtcGT

∑
q∈{s,r}

(
3∑

j=1

ϕIUqj(t) + ITq1(t) + ITq2(t)

)
dt,

(17)

denote the total costs over T years respectively about (1) the HIV-related health care cost (CHC), (2) the cost

of PrEP (CPrEP ), (3) the cost of first-line ART (CFirst line
ART ), (4) the cost of second-line ART (CSecond line

ART ), (5)

the cost of testing, counseling (CTC), (6) the cost of diagnosis (CDiag), and (7) the cost of genotype resistance

test (CGT ). See Appendix Table 2 for details.

3.3 ICERs

We calculated the incremental cost-effectiveness ratio (ICER) of each intervention strategy, relative to the status

quo as follows (see [16,17,20,21]):

ICER =
CostsIntervention − CostsStatus quo

QALY sIntervention −QALY sStatus quo
. (18)

In some cases, we also calculated the ICER of one intervention strategy A relative to another strategy B (for

example, combination of high PrEP and earlier ART versus high PrEP alone).

ICER =
CostsA − CostsB

QALY sA −QALY sB
. (19)

According to the WHO standards [22–24], if ICER<1 per capita GDP, the strategy is regarded as very cost-

effective; if 1 per capita GDP<ICER<3 per capita GDP, the strategy is regarded as cost-effective; if ICER>3

per capita GDP, the strategy is regarded as not cost-effective.
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4 Parameter estimation

We obtained data of the annual newly diagnosed AIDS cases and AIDS deaths from 1980 to 2014 in MSM

population in San Francisco from the Department of Public Health HIV Epidemiology Section. Using the maxi-

mum likelihood estimation, we fit the model to the data between 1980 and 1995 to estimate the prior-treatment

parameters (see more details in [2]): the recruitment rate of susceptible MSM is b = 4000 (95%CI:2295-5705) per

year, the disease-induced death rate at the chronic stage for untreated drug-sensitive individuals is µU
s = 0.28

(95%CI:0.18-0.39) per year, and the transmission rate in this stage is βU
s = 0.62 (95%CI:0.57-0.68) per year.

The estimation of the transmission rate is the same as the value of 0.62 shown in [25] for MSM in San Francisco.

The values of other parameters are given as follows. The initial MSM population size is chosen as 69122 [26,27].

The expected duration of a sexual career in San Francisco is assumed to be about 47 years (age 18-65) as in [28].

Thus, we have the removal rate m = 1/47 = 0.021 per year. For untreated drug-sensitive individuals, we choose

the duration of the primary stage as ap = 1.7 months [29], the duration of the chronic stage as dc = 7.5

years [30], and the duration of the AIDS stage as dA = 1.2 years (12 months to 20 months in [31]). Thus, we

obtain the rate of progression to the asymptomatic stage is δ1 = 1/ap = 1/(1.7/12) = 7.06 per year. Similarly,

we have the rate of progression to the AIDS stage is δUs = 1/dc = 1/7.5 = 0.13 per year and the disease-induced

death rate in the AIDS stage is µA = 1/dA = 1/1.2 = 0.83 per year. We assume the chronic stage dr for

untreated drug-resistant cases is 25% longer than untreated drug-sensitive cases, i.e., dr = 1.25dc = 9.38 years,

then the progression rate to the AIDS stage is δUr = 1/dr = 1/9.38 = 0.11 per year. The transmission rates

in the primary stage and AIDS stage are assumed to be 5.3 and 7 times more infectious than during chronic

infection, respectively, i.e., βp
s = 5.3βU

s , βp
r = 5.3βU

r [29] and βA
s = 7βU

s , βA
r = 7βU

r [32] (see Appendix Figures

4-5 in [2]). Here we assume all infected individuals are initially infected with drug-sensitive strains, so there

are only susceptible compartment and untreated drug-sensitive individuals at different infection stages at the

beginning of the epidemic (1980-1995).

We used the data from 1996 to 2006 (because ART was widely available after 1995 [33]) to estimate treatment-

related parameters. The treatment rate is estimated as η = 0.38 (95%CI:0.08-0.81) per year, i.e., the average

time from infection to ART initiation is aART = 2.8 years according to the relationship η = 1/(aART − ap).

The fraction of treated gay men in San Francisco is calculated as Fs = 46.4% (95%CI:15.3%-64.9%) based on

Eq. (3), which is close to the fraction in [3] where about 50% of HIV-infected MSM take ART. The disease-

induced death rate in the post-treatment chronic stage is estimated as µT
s = 0.05 per year (95%CI:0.01-0.27)

for drug-sensitive individuals and µT
r = 1.75µT

s = 0.088 per year for drug-resistant individuals [34]. In this

fitting process, we chose a bigger recruitment rate b = 5600 per year to yield simulated prevalence, total

infected individuals and population size simultaneously consistent with the prevalence data (Figure 2c in the

main text), persons living with HIV/AIDS data and total MSM population size data respectively as closely as

possible, which we did not fit directly (see [2] for more details). We also chose the relative transmissibility for

treated drug-resistant individuals (βT
r = 0.2βU

s , i.e, the baseline second-line drug effectiveness was estimated as

80%) to match the prevalence data of transmitted drug resistance (Appendix Figure 3, see [2] for more details)

under the assumption that the transmission rate for untreated drug-resistant individuals βU
r was the average

of that for treated drug-resistant βT
r and untreated drug-sensitive individuals βU

s based on their relationship

8
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βU
s > βU

r > βT
r [3], i.e., βU

r = (βT
r + βU

s )/2 = 0.6βU
s . The fraction of treated cases that are drug resistant is

chosen as fr = 25% (33% of MSM are virally unsuppressed [28] and of which 76% have drug resistance [35]).

The result of the HPTN 052 clinical trial [36, 37] showed that treatment led to 96% reduction in infectivity.

Thus, the transmission rate in treated individuals without drug resistance is only 4% as transmissible as HIV

positives not receiving ART (βT
s = 0.04βU

s ).

After 2006, San Francisco had name-based HIV reporting and incorporated monitoring initial primary care

visit into standard HIV public health investigation for newly diagnosed cases which improved the treatment

rate and shortened the time to entry into HIV medical care [38]. So we used the data from 2006 to 2012 to

estimate the growing treatment rate η = 0.7 per year and earlier ART initiating timing aART = 1.6 years. All

the other parameters are fixed in Appendix Table 1.

In 2012, the PrEP was approved by FDA and PrEP use has increased to 9.6% in 2014 in San Francisco [39].

We calibrated the model by choosing the PrEP receiving rate as ξ = 0.06 per year to match the 9.6% PrEP

coverage in 2014 and the coverage will reach 25% in 2023 (low coverage) at this PrEP receiving rate. If we

consider the cases that PrEP coverage will reach 50% (medium coverage) or 80% (high coverage) after 5 years (in

2023), then the rate that susceptible receive PrEP should increase to ξ = 0.20 or ξ = 0.68 per year respectively.

We assumed the PrEP effectiveness against drug-sensitive strains was ϵs = 53% in the base case based on

the meta-analysis results in [40] and against the resistant strains was ϵr = 50% × ϵs = 26.5% [13–15]. The

rate discontinuing PrEP was chosen as w = 8% per year based on the data in [41] that approximately 8% of

participants gave up PrEP due to side effect concerns and no perceived HIV risk in a one-year project in San

Francisco. We considered how the above PrEP scenarios (low, medium, high PrEP coverage) interacted with

the implementation of new even earlier ART guidelines (initiation at 1 year post infection averagely), in contrast

with previous ART guidelines (initiation at 1.6 years post infection averagely), will affect the cost-effectiveness

of PrEP over the next 20 years (from 2018 to 2038).

Next, we derive the relationship between extended life expectancies and infection age (more detail was shown

in [2]). It can be seen from [10,11] that suppressed patients (HIV-1 RNA ≤ 400 copies/ml) who had CD4+ count

< 200 or ≥ 350 cells/mm3 at ART start can live mean 30 or 45 years after treatment, respectively. In addition,

Fig. 1(B) in [12] shows that CD4+ count decreases with time since infection (infection age). Specifically, CD4+

count < 200 and ≥ 350 cells/mm3 corresponds to the infection age of 7-9 years and 0-6 years, respectively. We

chose the average infection age 8 years and 3 years for CD4+ count < 200 and ≥ 350 cells/mm3, respectively.

Therefore, if an infected individual is treated at 8 years post-infection with viral suppression, then he would live

30 years. However, if the treatment begins at 3 years, he would live 45 years. According to the assumed linear

decreasing relationship Eq. (4) between the average duration LT
s from ART initiation to death for suppressed

individuals and ART initiation timing aART (blue line in Appendix Figure 3a in [2]), we obtain

LT
s − 45 =

30− 45

3− 8
(aART − 3), i.e., LT

s = 54− 3aART .

This implies that there would be 3 years longer to live if ART had started one year earlier. The unsuppressed

individuals (HIV-1 RNA > 400 copies/ml) will take 11 years off life expectancy than treated suppressed individ-

uals [10,11]. Thus, if an infected individual is treated at 8 and 3 years post-infection without viral suppression,

then he can live 19 and 34 years, respectively. Similarly, we have the relationship between the average duration

LT
r from ART initiation to death for unsuppressed individuals and ART initiation timing aART (red line in

9
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Appendix Figure 3a in [2]) as follows

LT
r − 34 =

19− 34

3− 8
(aART − 3), i.e., LT

r = 43− 3aART .

When aART = 2.8 before 2006, we have LT
s = 45.6 and LT

r = 34.6. When aART = 1.6 after 2006, we have

LT
s = 49.2 and LT

r = 38.2. If aART = 1, we get LT
s = 51 and LT

r = 40. Notice that 76% of treatment-

failed patients have resistance to one or more antiretroviral drugs [35]. Therefore, we assume that the above

relationships between the extended life expectancy and ART initiating timing for unsuppressed and suppressed

patients still hold for treated individuals who do or do not develop drug resistance. See [2] for more details. All

the other parameters can be found in Appendix Table 1.

5 Supplementary Tables and Figures

5.1 Supplementary Tables

Appendix Table 1 shows the parameters used in simulation. Appendix Table 2 gives more detail on the

costs of expanding PrEP coverage and earlier ART, incremental to status quo (base case).

Appendix Table 1: Parameters and values for simulation and data fitting

Parameter Description Baseline or estimated Source

mean value

ap The duration of the primary stage 1.7 months [29]

dc The duration of the chronic stage

(untreated, drug-sensitive)

7.5 years [30]

dr The duration of the chronic

stage (=1.25dc, untreated, drug-

resistant)

9.38 years [2]

dA The duration of the AIDS stage 1.2 years [31]

b Susceptible population admission

rate

4000 per year before 1995

(95%CI:[2295,5705])

Fitted

5600 per year after 1995 [2]

m Removal rate due to changes in

sexual behavior

0.021 per year [28]

N(0) Initial total MSM population size 69122 [26,27]

µU
s The disease-induced death rate

at the chronic stage (untreated,

drug-sensitive)

0.28 per year (95%CI:[0.18,0.39]) Fitted

µA The disease-induced death rate at

the AIDS stage (=1/dA)

0.83 per year Calculated

δ1 Rate of progression to the chronic

stage (=1/ap)

7.06 per year Calculated

10
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Appendix Table 1: Parameters and values for simulation and data fitting

Parameter Description Baseline or estimated Source

mean value

δUs Rate of progression to the AIDS

stage for untreated drug-sensitive

individuals (=1/dc)

0.13 per year Calculated

δUr Rate of progression to the AIDS

stage for untreated drug-resistant

individuals (=1/dr)

0.11 per year Calculated

βU
s The transmission rate at the

chronic stage (untreated, drug-

sensitive)

0.62 per year (95%CI:[0.57,0.68]) Fitted

βp
s The transmission rate at the

primary stage (untreated, drug-

sensitive)

5.3βU
s [29]

βA
s The transmission rate at the AIDS

stage (drug-sensitive)

7βU
s [32]

βT
s The transmission rate in the post-

treatment chronic stage (drug-

sensitive)

0.04βU
s [36,37]

βT
r The transmission rate in the post-

treatment chronic stage (drug-

sensitive)

0.2βU
s [2]

βU
r The transmission rate at the

chronic stage (=(βU
s + βT

r )/2, un-

treated, drug-resistant)

0.6βU
s [2]

βp
r The transmission rate at the

primary stage (untreated, drug-

resistant)

5.3βU
r [29]

βA
r The transmission rate at the AIDS

stage (drug-resistant)

7βU
r [32]

η The treatment rate 0.38 per year before 2006

(95%CI:[0.08,0.81])

[2]

0.7 per year after 2006

(95%CI:[0.68,0.71])

[2]

aART The average time from infection to

treatment

2.8 years before 2006

1.6 years after 2006

[2]
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Appendix Table 1: Parameters and values for simulation and data fitting

Parameter Description Baseline or estimated Source

mean value

LT
s The post-treatment extended life

expectancy for drug-sensitive cas-

es

45.6 years before 2006

49.2 years after 2006

[2]

LT
r The post-treatment extended life

expectancy for drug-resistant cas-

es

34.6 years before 2006

38.2 years after 2006

[2]

δTs Rate of progression to the AIDS

stage for treated drug-sensitive in-

dividuals (=1/(LT
s − dA))

0.022 per year before 2006

0.020 per year after 2006

Calculated

δTr Rate of progression to the AIDS

stage for treated drug-resistant in-

dividuals (=1/(LT
r − dA))

0.029 per year before 2006

0.026 per year after 2006

Calculated

µT
s The disease-induced death rate in

the post-treatment chronic stage

(drug-sensitive)

0.05 per year (95%CI:[0.01,0.27]) Fitted

µT
r The disease-induced death rate in

the post-treatment chronic stage

(drug-resistant)

1.75µT
s [34]

fr The fraction of treated cases that

are drug resistant

0.25 [28,35]

ϵs The PrEP effectiveness against

drug-sensitive strains

53% [40]

ϵr The PrEP effectiveness against

drug-resistant strains

0.5ϵs [13–15]

Quality-of-life factors

QS Uninfected, no PrEP 1.00 [16,43–45]

QP Uninfected, receiving PrEP 1.00 (0.90-1.00) [45]

QU
s1 Acute HIV (Untreated, drug-

sensitive)

0.94 (0.73-0.97) [16,42–45]

QU
s2 Asymptomatic HIV (Untreated,

drug-sensitive)

0.82 (0.82-0.95) [16,42–45]

QU
s3 AIDS (Untreated, drug-sensitive) 0.70 (0.60-0.75) [16,42–45]

QT
s1 Asymptomatic HIV (Treated,

drug-sensitive)

0.83 (0.82-0.87) [16,43–45]

QT
s2 AIDS (Treated, drug-sensitive) 0.82 (0.82-0.87) [16,43–45]
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Appendix Table 1: Parameters and values for simulation and data fitting

Parameter Description Baseline or estimated Source

mean value

QU
r1 Acute HIV (Untreated, drug-

resistant)

0.95QU
s1 [18,19]

QU
r2 Asymptomatic HIV (Untreated,

drug-resistant)

0.95QU
s2 [18,19]

QU
r3 AIDS (Untreated, drug-resistant) 0.95QU

s3 [18,19]

QT
r1 Asymptomatic HIV (Treated,

drug-resistant)

0.95QT
s1 [18,19]

QT
r2 AIDS (Treated, drug-resistant) 0.95QT

s2 [18,19]

Cost parameters

(2017 US $)

cneg Cost of HIV testing (antibody

test) and counseling for uninfected

individuals

42 (5-75) [44,45]

cpos Cost of HIV testing (antibody

test) and counseling for infected

individuals

119 (50-300) [44,45]

cdiag Cost of HIV diagnosis 633 (125-1200) [44,45]

cGT Cost of HIV genotype resistance

test

218 (54-239) [19]

cART
s Annual cost of first-line drugs 15450 (9170-22300) [46]

cART
r Annual cost of second-line drugs 1.24cART

s [47]

cP Annual cost of PrEP 17874 (7250-22342) [48]

Annual HIV-related

healthcare costs

cUs1 Acute HIV (Untreated, drug-

sensitive)

37 (10-500) [44,45]

cUs2 Asymptomatic HIV (Untreated,

drug-sensitive)

4244 (2460-5950) [44,45]

cUs3 AIDS (Untreated, drug-sensitive) 21260 (10380-33240) [46]

cTs1 Asymptomatic drug-sensitive

HIV-Treated with first-line drugs

(excludes ART costs)

6896 (4190-9280) [16,43–45]

cTs2 AIDS with drug-sensitive strain-

Treated with first-line drugs (ex-

cludes ART costs)

10609 (4870-17160) [16,43–45]

13



BMC Medicine

Appendix Table 1: Parameters and values for simulation and data fitting

Parameter Description Baseline or estimated Source

mean value

cUr1 Acute HIV (Untreated, drug-

resistant)

cUs1 Assumed

cUr2 Asymptomatic HIV (Untreated,

drug-resistant)

cUs2 Assumed

cUr3 AIDS (Untreated, drug-resistant) cUs3 Assumed

cTr1 Asymptomatic drug-resistant

HIV-Treated with second-line

drugs (excludes ART costs)

cTs1 Assumed

cTr2 AIDS with drug-resistant strain-

Treated with second-line drugs

(excludes ART costs)

cTs2 Assumed

CI=confidence interval; PrEP=preexposure prophylaxis; ART=antiretroviral therapy.
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5.2 Supplementary Figures

Appendix Figure 1 shows the flow diagram of the model (6). Appendix Figure 2 illustrates the dynamics

of susceptible with PrEP. Appendix Figure 3 shows how the proportion of new infections that are drug

resistant varies with the time.

Appendix Figures 4-7 demonstrate additional sensitivity analyses of our ICER estimates of low or medium

PrEP coverage with earlier ART, and medium or high PrEP coverage without earlier ART compared to status

quo. The ICER is less sensitive to the effectiveness of PrEP against drug-sensitive strains with earlier ART

(Figure 5 in the main text and Appendix Figures 6-7) than without earlier ART (Appendix Figures

4-5), because earlier ART substantially increases QALYs and thereby reduces the potential benefits of PrEP.

If the relative effectiveness of PrEP against resistant versus susceptible strains decreases from 50% to 0 (PrEP

is completely ineffective against resistant strains), the ICER would increase by 16% from $115 320 to $133 660

per QALY gained.

The three drug resistance parameters (the fraction of acquired drug resistance, the costs of second-line drugs,

and the quality of life for drug-resistant individuals) had limited effects on cost-effectiveness results because

PrEP costs comprise 87% of total costs for high PrEP coverage plus earlier ART (Table 1 in the main text), and

thus drug-resistance related costs only minimally impact total costs. However, second-line drug effectiveness

greatly affects the cost-effectiveness of PrEP (Figure 5 in the main text) with greater effectiveness leading

to a higher ICER. Although increasing second-line drug effectiveness increases total QALYs, it causes an even

greater increase in total costs (hence a higher ICER) since the consequent reduction in new HIV infections

means a larger susceptible population on PrEP. Thus, the reductions (savings) in treatment costs are largely

counterbalanced by substantial increases in PrEP costs. Nonetheless, highly effective second-line drugs remain

cost-effective.
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Appendix Figure 1: A full flow diagram illustrating our transmission model of HIV epidemic dynamics with PrEP

and ART interventions, accounting for the acquisition of drug resistance following ART and the transmission

of drug resistance for model (6). Abbreviation: ART, antiretroviral therapy; PrEP, pre-exposure prophylaxis.
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Appendix Figure 2: The number of susceptible with PrEP (a), total susceptible (b), and total population size

(c) varied with the time for low, medium, and high PrEP coverage with or without earlier ART. Abbreviation:

ART, antiretroviral therapy; PrEP, pre-exposure prophylaxis.
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Appendix Figure 3: (a) Observed proportion of new infections that are drug resistant (black dots, with 95%

confidence interval if available, denote genotypic resistance and red dots denote phenotypic resistance) among

previous cohorts and model fit (blue line). See [2] for more detail. Previous comparison between model and

empirical data for trends of percentage of new drug-resistant infections in San Francisco (1996-2005) can be

found in [49]. (b) Predicted proportion of new infections that are drug resistant over next 20 years for low,

medium, and high PrEP coverage with or without earlier ART. This is in accordance with the results of Figure

4 in [13]. Abbreviation: ART, antiretroviral therapy; PrEP, pre-exposure prophylaxis.
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Appendix Figure 4: One-way sensitivity analysis on cost-effectiveness of medium PrEP coverage without earlier

ART compared to the status quo. The horizonal bars represent the range of the incremental cost-effectiveness

ratios (ICERs) as each variable is varied across its plausible range listed. The solid vertical line indicates

the base case ICER ($117 130 per QALY gained). The dashed vertical line represents the per capita gross

domestic product (GDP) for San Francisco ($81347 in 2015 [50]), a threshold denoting a very cost-effective

use of resources, by international standards [22–24]. Abbreviation: PrEP, pre-exposure prophylaxis; ART,

antiretroviral therapy; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; GDP, gross

domestic product.
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Appendix Figure 5: One-way sensitivity analysis on cost-effectiveness of high PrEP coverage without earlier

ART compared to the status quo. The horizonal bars represent the range of the incremental cost-effectiveness

ratios (ICERs) as each variable is varied across its plausible range listed. The solid vertical line indicates

the base case ICER ($132 520 per QALY gained). The dashed vertical line represents the per capita gross

domestic product (GDP) for San Francisco ($81347 in 2015 [50]), a threshold denoting a very cost-effective

use of resources, by international standards [22–24]. Abbreviation: PrEP, pre-exposure prophylaxis; ART,

antiretroviral therapy; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; GDP, gross

domestic product.
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Appendix Figure 6: One-way sensitivity analysis on cost-effectiveness of low PrEP coverage plus earlier ART

compared to the status quo. The horizonal bars represent the range of the incremental cost-effectiveness ratios

(ICERs) as each variable is varied across its plausible range listed. The solid vertical line indicates the base

case ICER ($4745 per QALY gained). The dashed vertical line represents the per capita gross domestic product

(GDP) for San Francisco ($81347 in 2015 [50]), a threshold denoting a very cost-effective use of resources, by

international standards [22–24]. Abbreviation: PrEP, pre-exposure prophylaxis; ART, antiretroviral therapy;

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; GDP, gross domestic product.
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Appendix Figure 7: One-way sensitivity analysis on cost-effectiveness of medium PrEP coverage plus earlier ART

compared to the status quo. The horizonal bars represent the range of the incremental cost-effectiveness ratios

(ICERs) as each variable is varied across its plausible range listed. The solid vertical line indicates the base case

ICER ($78 811 per QALY gained). The dashed vertical line represents the per capita gross domestic product

(GDP) for San Francisco ($81347 in 2015 [50]), a threshold denoting a very cost-effective use of resources, by

international standards [22–24]. Abbreviation: PrEP, pre-exposure prophylaxis; ART, antiretroviral therapy;

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; GDP, gross domestic product.
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