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Supplementary Methods 

 

Study cohorts 

Primary tumor samples with clear cell RCC histology (n=108), as well as metastases 

samples (n=22), of patients treated at the Department of Urology, University Hospital 

Tuebingen, Germany, were collected. Patients’ characteristics, clinicopathological features, 

and survival data are given in Table 1. Further details about metastases are summarized in 

Supplementary Table S1. Use of the tissue was approved by the ethics committee of the 

University of Tuebingen and informed written consent was provided by each subject prior to 

surgical resection. Surgically resected ccRCC tissues were classified according to the 

seventh edition of the Union Internationale Contre le Cancer/American Joint Committee on 

Cancer system (2009). Survival end-point was cancer-specific survival (CSS) defined as the 

time from surgery to death or to last date of follow-up if alive. Data for patients who died from 

other causes than ccRCC disease were considered censored at the time of death. None of 

the patients received any kind of neoadjuvant therapy before surgery, neither immune- nor 

chemotherapy. 

Additionally, publicly available gene expression data from The Cancer Genome Atlas (TCGA) 

[1] from a cohort of ccRCC patients (n=463, as described in [2]), were used as development 

cohort for re-designing the S3-score calculation model. Kaplan-Meier curves of cancer-

specific survival for each cohort are shown in (Supplementary Fig.S2). Moreover, publicly 

available gene expression data from an independent cohort of sunitinib treated ccRCC 

patients (n=53) [3] were used for evaluation in the present study. Supplementary Fig.S1 

shows an overview about the workflow of data analyses including the different cohorts and 

technologies used in the present study. 
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Gene expression analyses  

High quality total RNA was isolated from fresh-frozen ccRCC and metastasis tissue using the 

mirVana™ miRNA Isolation Kit (Life Technologies) as previously described [4, 5]. Genome-

wide transcriptome analyses were performed using the Human Transcriptome Array HTA 2.0 

(Affymetrix) according to the manufacturer’s protocol. Further processing of microarray data 

were performed as previously described [5]. Array quality control as well as preprocessing of 

microarray data using Robust Multi-array Average (RMA) were conducted by Affymetrix 

Expression Console (Build 1.4.1.46). RMA was applied separately to each of the two sample 

types (ccRCC (n=52) and metastases (n=22)). The accession number for data of metastases 

and primary ccRCC at the European Genome-phenome Archive (EGA) 

(www.ebi.ac.uk/ega/home), which is hosted by the EBI and the CRG, is EGAS00001001176. 

Gene expression data (generated using the HuGene 1.0ST Affymetrix array) from 53 

sunitinib treated ccRCC patients [3] were downloaded from ArrayExpress (E-MTAB-3267). 

The set of arrays was preprocessed using the Robust Multiarray Average implementation 

from the R-package oligo. 

Quantitative real-time PCR (RT-PCR) was performed using TaqMan technology on a 

BioMARK System (Fluidigm) as described previously [4, 5]. TaqMan gene expression assays 

for 97 genes of the S3-score, as well as 5 genes used for normalization were purchased from 

Life Technologies (further details about the assays purchased from Life Technologies are 

available upon request).  

 

Statistical analyses 

Statistical tools 

All statistical analyses were performed with R-3.3.3 including additional packages 

beeswarm_0.2.3, glmnet_2.0-5, partykit_1.1-1, oligo_1.38.0, pamr_1.55, and survival_2.41-2 

[6–14]. All statistical tests were two-sided. Statistical significance was defined as P < 0.05. 
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Selection of normalization genes for RT-PCR 

Candidate genes for RT-PCR normalization were identified based on RNA-Seq data from the 

development cohort (463 samples, see [2]) and HTA 2.0 microarray measurements in 37 

ccRCC samples from the ccRCC cohort 1. Only isoforms (RNA-seq) or genes (HTA 2.0) with 

mean expression above the mean of all isoforms/genes were considered. Further, optimal 

assays should be available at Life Technologies. We applied the NormFinder software [15] to 

rank isoforms/genes according to expression stability across samples. Five assays were 

selected for normalization with Hs00191307_m1 (CIAO1), Hs00171309_m1 (ELAVL1), 

Hs00199190_m1 (SF3B2) selected based on RNA-Seq and Hs00999748_m1 (PRDM10), 

Hs00205849_m1 (BRD1) selected based on microarray data. Assays representing the 97 

signature genes were divided randomly on three plates, each assay was measured in 

duplicate. Duplicate measurements were averaged and then normalized by subtracting the 

median of the normalization genes. 

 

Calculation of the S3-score based on interprofile correlations 

Interprofile correlation-based S3-scores were calculated as previously described [2]. Briefly, 

Spearman's correlation coefficients were computed between each tumor and each of the 

eight nephron regions by means of the 97 signature genes. Subsequently, the eight 

correlation coefficients were centered and standardized per tumor (z-scores). The z-score 

assigned to the S3 region constituted the S3-score of a tumor. The correlation-based 

calculation of the S397-score was used for samples for which genome-wide transcriptome 

expression measurements generated by RNA-Seq or microarray were available. 
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Development of a S3-score calculation model for use of RT-PCR data 

For use of RT-PCR measurements a new calculation model of the S3-score was developed. 

A linear model was created that reconstructs the correlation-based S3-scores in the 

development cohort [2] by means of expression values of the genes from the signature set. 

Prior to model selection the set of predictor variables was filtered. To ensure minimum failure 

rates in future applications, all assays that failed (i.e. both measurements in a sample failed) 

minimum once were excluded. Moreover, we used only genes that were comparable with 

respect to mean expression and variation of expression between the development cohort 

(RNA-Seq) and the extended validation cohort (RT-PCR). To be precise, for each sample 

gene expression values were normalized by subtracting the median of the five normalization 

genes yielding Δlog2RPKM (development cohort) and ΔCt values (extended validation 

cohort), see Supplementary Fig.S3. Genes with absolute difference in mean below 1.0 and 

absolute difference in standard deviation below 0.5 were kept. The resulting set of variables 

used for model selection included 41 genes.  

The glmnet R package was applied to fit a linear model regularized by lasso penalty on the 

41 genes to reconstruct the S3-scores in the development cohort. Model selection was 

conducted on normalized RPKM values (Δlog2RPKM). The regularization parameter lambda 

was determined from averaged error curves that were obtained from repeated cross 

validations (500 times). Except standardization of response and predictor variables, the 

functions glmnet and cv.glmnet were run with default parameter settings. As suggested by 

glmnet, the simplest model with a cross validation error within one standard deviation of the 

minimum cross validation error was selected (Supplementary Table S3). This final model 

included 15 genes. Scores produced by this model are referred to as S315-scores.  

In our previous work [2] we had defined a cut-off (-0.167) to distinguish between cases of 

high and low risk based on the S3-score. This cut-off is intended for S397-scores that were 

calculated using the correlation-based approach and hence has been used in this work to 

dichotomize the cohorts that were measured with microarrays. For cohorts measured with 
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RT-PCR we determined a separate cut-off. Using the conditional inference tree framework 

with endpoint CSS from the R-package partykit samples were partitioned based on the S315-

score. The resulting cut-off (-0.249) differed only slightly from the original cut-off. From the 

108 samples of the validation cohort two samples would have been grouped differently if the 

original cut-off had been used. 

 

ClearCode34 

The ClearCode34 classifier as introduced by Brooks et al. [16] was applied on the matched 

tumor and metastases samples for which genome-wide expression data measured by HTA 

2.0 microarrays were available. A trainings data set for classification by the prediction 

analysis of microarrays (PAM) method was kindly provided by the authors (pers. Comm., 

S.A. Brooks, Chapel Hill, NC, USA). Gene GALNT4 was not included on the HTA 2.0 

microarray and therefore disregarded. Before using PAM, gene expression values were 

median centered across samples. 

 

Survival analyses 

Cancer-specific survival (CSS) was used as an endpoint in survival analyses involving the 

development cohort (ccRCC TCGA, see [2]) as well as our ccRCC cohorts 1 and 2. CSS was 

defined as the time from surgery to death or last date of follow-up if alive. Data for patients 

who died from other causes than ccRCC disease were considered censored at the time of 

death. Progression-free survival was used as endpoint in the survival analysis of the cohort 

of sunitinib treated ccRCC patients, for details see [3]. Survival analyses for both endpoints 

were conducted by Kaplan-Meier curves and corresponding log-rank tests. Comparisons of 

Cox models were performed by analysis of deviance. 
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SSIGN-score 

The stage, size, grade, necrosis (SSIGN) score was calculated as denoted in Zigeuner et al. 

[17]. Scores of 0-1 as well as scores of 10 or greater were pooled together, respectively. One 

sample was excluded from survival analyses involving SSIGN-score as no metastasis status 

information was available. Further, two tumors with assigned tumor grade "2-3" were 

considered as grade "3" tumors in SSIGN-score calculation.   
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Supplementary Table S1: Patient demographics and metastatic sites of metastases derived 

from ccRCC (n=22 with available microarray data; n=16 with available RT-PCR data).  

 

    Metastases Set 1   Metastases Set 2 

    
 (n=22 from 15 

patients§) 
  

 (n=16 from 14 
patients§) 

    n, value %   n, value % 

Sex Male 12 80.00%   11 78.57% 

  Female 3 20.00%   3 21.43% 

Age (year) at metastasis 
resection 

Median (range) 64 (50 – 77)     66 (51-77)   

Metastatic site lymph node* 10 52.63%   7 43.75% 

  adrenal gland 3 15.79%   2 12.50% 

  local recurrence 2 10.53%   2 12.50% 

  
abdominal 
wall/cutaneous 

2 10.53%   1 6.25% 

  ileum 1 5.26%   1 6.25% 

  liver 1 5.26%   1 6.25% 

  shoulder 1 5.26%   1 6.25% 

  thorax 1 5.26%   1 6.25% 

  omentum 1 5.26%   0 0.00% 

 

§
 5 patients from our ccRCC cohort 1 and from our extended ccRCC cohort 2 (Table 1) with matched 

primary tumor and metastases samples were included and indicated as P1-P5 in Figure 3A and B. All 

other metastases are derived from independent patients that are not part of our ccRCC cohorts listed 

in Table 1.  

* including 4 lymphnode regions of one patient 
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Supplementary Table S2: Univariate Cox regression for cancer-specific survival in the 

ccRCC cohort 1 (n=52), as well as analyses of progression-free survival in patients after 

treatment with sunitinib (n=53). 

 

 

Univariate analyses variable level 
no. of 
cases 

HR (95%CI) 
P-value 

c-index 
(Log-rank test) 

ccRCC cohort 1 S397-score high 36 1 (Ref.) 3.29E-02 0.65 

    low 16 2.89 (1.04 – 8.04)     

Sunitinib treated 
ccRCC patients 

S397-score high 33 1 (Ref.)  2.17E-02 0.60 

    low 20 2.14 (1.10 – 4.16) 
  

 

Abbreviations: CI, confidence interval; HR, Hazard Ratio; c-index, Harrell`s c-index; Ref., 

Reference level. S397-scores were determined based on gene expression data measured by 

microarrays. 
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Supplementary Table S3: Genes included in the linear model for calculation of the S315-

score and corresponding regression coefficients. 

 

variable coefficient 

(Intercept) -0.011639907 

FTCD 0.02099844 

NAPSA 0.01695184 

PDZK1IP1 0.050775946 

DPEP1 0.008775838 

DEFB1 -0.026493293 

ARHGDIB -0.027795375 

MIOX 0.079704719 

CTGF -0.069596024 

ANPEP 0.077325565 

CRYAB 0.008904111 

MGP -0.034015862 

TMEM27 0.065900548 

MAL -0.001652004 

EPS8L1 -0.023210981 

SLPI -0.044062178 
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Supplementary Table S4: Association of patient characteristics and clinicopathological 

parameters with “high” and “low” groups, as identified by the S315-score in the extended 

ccRCC cohort 2. Distributions are shown in Supplementary Fig. S5. 

 

parameter categories† 
P-value (Fisher's 

exact test) 

Primary tumor  T1/ T2/ T3 1.17E-01 

Regional lymph node  N0/ N1/ N2 4.02E-02 

Distant metastasis M0/ M1 7.18E-02 

Fuhrman grade G1/ G2/ G3 6.31E-05 

Tumor necrosis yes/ no 9.45E-02 

Gender female/ male 6.24E-01 
†
Tumors with grade “G2-3” and “G4” were added to “G3”. Tumors with no grading information or 

metastasis status “MX” were disregarded. 
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Supplementary Table S5: Concordance of S3-scores in matched tumor and metastases or 

metastases derived from the same patient, as well as regions from one metastasis. Results 

are compared to risk prediction using the ClearCode34 signature. 

 

Patient* Metastatic site S397-score ClearCode34 

   tumor metastasis tumor metastasis 

P1 
lymph node 

high 
high 

ccA 
ccA 

adrenal gland high ccA 

P2 lymph node high low ccA ccB 

P3 lymph node high high ccA ccA 

P4 lymph node low low ccB ccB 

P5 adrenal gland high high ccA ccA 

P6† 

lymph node 

 

low 

 

ccB 

lymph node low ccB 

lymph node low ccB 

lymph node low ccB 

P7 
local recurrence 

 
high 

 
ccA 

local recurrence low ccA 

P8 

omentum 

 

low 

 

ccB 

abdominal 
wall/cutaneous 

low ccB 

abdominal 
wall/cutaneous 

low ccA 

 

† For patient P6, four regions of one metastasis were analyzed.  

* Patients P1-P5 are metastatic patients included in our ccRCC cohort 1 and in our extended 

ccRCC cohort 2 
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Supplementary Figure S1 

 

 

 

Overview about the workflow of data analyses including different cohorts and technologies 

(microarray and RT-PCR) used in the present study. 

  



 

14 
 

Supplementary Figure S2 

 

 

 

Kaplan-Meier curves of cancer-specific survival for the TCGA and ccRCC cohorts 1 

and 2 are shown. 
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Supplementary Figure S3 

 

 

 

Correlation between mean gene expression (left panel) and variation of expression 

(right panel) between the TCGA cohort and our validation cohort. For model 

development only genes (marked in red) were considered that were comparable with respect 

to mean expression (absolute difference < 1.0) and variation of expression (absolute 

difference in standard deviation < 0.5) between the RNA-seq data in the TCGA cohort (which 

was used to develop the S3-score) and the RT-PCR values. Both data sets were normalized 

by subtracting the median of the five normalization genes per sample. 
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Supplementary Figure S4 

 

 

 

Scatterplot of the S3-scores determined through microarray or RT-PCR in ccRCC cohort 1 

(n=52) along with Spearman’s rank correlation coefficient. The relationship between both 

scores is highlighted by the red trend line obtained by local polynomial regression fitting. 
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Supplementary Figure S5 

 

 

 

Distribution of patient characteristics and clinicopathological parameters in the “high“ and 

“low“ groups, as identified by the S315-score in the extended ccRCC cohort 2. Associated P-

values are shown in Table S4. Tumors with grade “G2-3” and “G4” were added to “G3”. 

Tumors with no grading information or metastasis status “MX” were disregarded. 
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Supplementary Figure S6 

A 

 

B 

 

Evaluation of the S3-score in metastatic RCC patients treated with nivolumab. The S3-

score was calculated based on the 97 signature genes in a cohort of patients that were 

treated with nivolumab intravenously every 3 weeks at 10 mg/kg to treatment-naïve patients 

(A), and at 0.3, 2, or 10 mg/kg to previously treated (B) patients with mRCC. The S397-score 

did not differ significantly in pre- and post-treatment biopsies irrespective whether patients 

were treatment-naïve (A) or not (B). Gene expression data (generated using the HG-U219 

array plate, Affymetrix) from mRCC patients [18] were downloaded from ArrayExpress (E-

MTAB-3218) and were pre-processed using the Robust Multiarray Average (RMA) 

implementation from the R-package oligo.  
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