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Sexual mixing 

We use the survey data published by the FPAHK (http://www.famplan.org.hk) to construct 

the sexual activity matrix (Table S1) as follows: 

1. Individuals age below 10 or above 69 are assumed to be sexually inactive.  

2. The sexual activity distributions for individuals age 13-14 (text in red) are based on the 

data for Forms 1-2 students in The Report of Youth Sexuality Study 2011. 

3. The sexual activity distributions for individuals age 10-12 (text in green) are linearly 

interpolated from the distributions in steps 1 and 2. 

4. The sexual activity distributions for individuals age 15-19 (text in purple) are based on 

the data in Section Form 3- Form 7 in The Report of Youth Sexuality Study 2006. 

5. The sexual activity distributions for individuals age 20-24 (text in magenta) are based on 

the data in Section Aged 18-27 Youths in The Report of Youth Sexuality Study 2006. 

6. The sexual activity distributions for males age 30-69 (text in blue) are based on Table 

7.5a in the 2001 Men’s Health Survey. 

7. The sexual activity distributions for females age 30-69 (text in orange) are extrapolated 

from the distribution for females age 20-24 (from step 5) assuming that the age effect on 

the distribution of low and high levels of sexual activity for females is the same as that 

for males (from step 6). 

8. The data in both The Report of Youth Sexuality Study 2006 and Men’s Health Survey 

2001 suggest that those with a high level of sexual activity had an average of 2.5 sexual 

partners during the past 6 months. 

  

http://www.famplan.org.hk/
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 Sexual activity level (no. of sexual partners during the 6 months) 

 Male Female 

Age (years) None (0) Low (1) High (>1) None (0) Low (1) High (>1) 

10-12 0.993 0.007 0.000 0.998 0.002 0.000 

13-14 0.985 0.015 0.000 0.995 0.005 0.000 

15-19 0.900 0.062 0.038 0.945 0.046 0.009 

20-24 0.580 0.303 0.117 0.632 0.291 0.077 

25-29 0.286 0.579 0.135 0.312 0.556 0.132 

30-39 0.102 0.798 0.100 0.111 0.766 0.122 

40-49 0.094 0.827 0.079 0.102 0.794 0.103 

50-59 0.099 0.849 0.052 0.108 0.815 0.077 

60-69 0.362 0.604 0.034 0.394 0.580 0.025 

Table S1. The distribution of individuals with no, low and high level of sexual activity in 

each age group. Individuals with one and multiple sexual partners during the past 6 months 

are regarded as having low and high sexual activity levels, respectively. 
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Adjusted contact rates 

For the transmission model to be internally consistent, the following balance rule must be 

satisfied at all times: 

, , , , , , , , , , , , , , , ,( ) ( ) ( ) ( )f a u f a u b v f a u m b v m b v a u m b vc t N t c t N t   

, , , , , , , , , , , , , , , ,( ) ( ) ( ) ( )f a u f a u b v f a u m b v m b v a u m b vc t N t c t N t   

This balance rule simply states the fact that the number of sexual partnerships that females 

from stratum ( , , )f a u form with males from stratum ( , , )m b v is the same as the number of 

sexual partnerships that males from stratum ( , , )m b v form with females from stratum 

( , , )f a u . At any given time t, the degree to which the balance rule is violated could be 

measured by: 
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To ensure that the balance rule is satisfied at all times, the adjusted contact rates are: 
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Following common practice, we choose 0.5   which means that the relevant parameters of 

females and males are adjusted to the same degree.[1] 
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Natural history 

Figure S1 shows the natural history of HR-HPV infection and cervical cancer among females 

in the model. Individuals enter the population without HPV infection at birth and become 

sexually active as early as age 10. For females who are infected with HPV, the infection 

could progress to precancerous states (CIN1, CIN2 and CIN3). We assume that individuals 

with CIN3 would not recover naturally. Disease progression rates and clearance rates are 

assumed to depend on HPV type but not age.   

 

Local cervical cancer without symptoms may become symptomatic or progress to more 

advanced stages of cervical cancer without symptoms. In the absence of screening, cervical 

cancer is diagnosed only when symptoms develop in which the patient is immediately treated. 

Females with symptomatic cervical cancer are subjected to stage-specific (local, regional or 

distant) probability of cancer-associated death.[2] We assume that recovery from cervical 

cancer does not confer natural immunity against reinfection. The progression rates of cervical 

cancer and the cervical cancer-related death rates are assumed to be independent of age, 

sexual activity level and HPV type.[3] 

 

Basic compartmental epidemic models based on ordinary differential equations (ODEs) 

assume that the duration of each compartment is exponentially distributed.[4] For any given 

mean duration, the probability that the duration is shorter than the mean is higher in 

exponential distribution than in more biologically plausible distributions such as Erlang and 

lognormal distributions. Such a difference would have little effect for disease states milder 

than CIN3 because their durations are relatively short compared to cervical screening 

intervals. However, given that the expected duration of CIN3 is much longer (>10 years on 
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average),[5] assuming that the duration of CIN3 is exponentially distribution might artificially 

lower the effectiveness of cervical screening. As such, we assume that the time from CIN3 to 

asymptomatic local cervical cancer is an Erlang-4 distribution.[4,6] This multiple-compartment 

component is important for the stochastic cohort simulation model which simulates the 

impact of cervical screening on prevention of cervical cancer. We refer to a local study for 

cervical cancer specific survival by the International Federation of Gynaecologists and 

Oncologists (FIGO) staging system.[7] The reported 5-year survival rates are 90.9%, 71.0%, 

41.7% and 7.8% for FIGO stage I, II, III and IV, respectively. Cancer patients who remain 

alive 5 years after cancer diagnosis are regarded as cancer survivors.[8] In the model, cancer 

survivors are moved to the health state “No infection (susceptible)” and are susceptible to 

new HPV infection. 

 

We assume that the transmission, progression and regression parameters for HPV infections 

in males are the same as that in females.[3] We do not consider HPV-associated diseases 

among males.[3,9] 
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Figure S1. Schematic of the natural history model for HR-HPV infection and cervical cancer among females. Abbreviations: CC1 to CC4, 

cervical cancer in International Federation of Gynecology and Obstetrics (FIGO) stage I to IV correspondingly. λh is the force of infection (FOI) 

for HPV class h. γh
X and τh

X are the progression and clearance rate for disease state X with HPV class h. wh is the waning rate of natural 

immunity against HPV class h. The progression of CIN3 to asymptomatic CC1 is assumed to follow an Erlang-4 distribution with mean 

CIN31 h  , i.e. CIN3 CIN3 / 4h hg  . 
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Model parameterization 

We estimate the model parameter values using the Metropolis-Hasting algorithm with non-

informative flat priors for all parameters[10,11] (see Table S2). When formulating the 

likelihood function for model fitting, we assume: 

1. The data on age-specific HPV prevalence[12] and proportion of HPV types in cervical 

cancer cases[13] follow binomial distributions; 

2. The data on age-specific cervical cancer incidence[14] follow Poisson distributions; 

3. The data on disease progression and clearance (for different stages of HPV 

infection)[15,16] follow multinomial distributions.   

 

The trace plot and Geweke diagnostic[17] indicate that the MCMC chain converges (Figure 

S2). As such, we estimate the posterior distribution by running the Metropolis-Hasting 

algorithm for 300,000 iterations with a burn-in of 150,000 iterations without thinning. Table 

S2 shows the summary statistics of the posterior distributions.  
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(A) Inferred parameters on natural 

history 

Posterior median (95% CrI) 

Parameter Description HPV-16 HPV-18 HPV-OV HPV-NV 

βh Transmission probability per 

sexual partnership 

0.75 

(0.50, 0.96) 

0.88 

(0.60, 0.98) 

0.93 

(0.80, 0.99) 

0.61 

(0.50, 0.71) 

1/γh
HPV Mean duration: progression 

from HPV infection to CIN1 

8.7 

(7.2, 11.3) 

5.9 

(4.3, 8.6) 

10.7 

(8.9, 12.8) 

11.2 

(9.4, 13.5) 

1/γh
CIN1 Mean duration: progression 

from CIN1 to CIN2 

3.9 

(2.7, 5.3) 

3.4 

(2.3, 5.2) 

2.7 

(2.1, 3.9) 

1/γh
CIN2 Mean duration: progression 

from CIN2 to CIN3 

4.2 

(3.0, 6.4) 

4.2 

(2.9, 6.7) 

4.5 

(2.9, 7.3) 

1/γh
CIN3 Mean duration: progression 

from CIN3 to cervical cancer 

22 

(18, 28) 

22 

(16, 30) 

32 

(20, 40) 

1/τh
HPV Mean duration: clearance of 

HPV infection 

2.2 

(1.9, 2.5) 

1.4 

(1.2, 1.7) 

1.6 

(1.5, 1.8) 

1.6 

(1.5, 1.7) 

1/τh
CIN1 Mean duration: clearance of 

CIN1 

3.2 

(2.1, 4.8) 

3.0 

(2.2, 4.3) 

1.3 

(1.1, 1.7) 

1/τh
CIN2 Mean duration: clearance of 

CIN2 

3.2 

(2.5, 4.3) 

3.2 

(2.3, 4.4) 

1.7 

(1.4, 2.4) 

1/wh Mean duration of natural 

immunity 

15.9 

(2.7, 83.2) 

16.9 

(3.6, 74.8) 

0.68 

(0.51, 1.69) 

0 

(assumed) 
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(B) Inferred parameters on sexual mixing Posterior median (95% CrI) 

W1 Age (yrs) at which susceptibility 

and infectiousness begin to fall 

21 

(16, 25) 

W2 Age (yrs) at which susceptibility 

and infectiousness stop falling and 

begin to plateau 

24 

(21, 27) 

Μ Relative transmission probability 

for individuals older than W1 

0.47 

(0.41, 0.53) 

εA Degree of assortativeness for sexual 

mixing across ages 

0.77 

(0.29, 0.97) 

εS Degree of assortativeness for sexual 

mixing across sexual activity levels 

0.98 

(0.89, 0.99) 

σg Spread of age preference (yrs) in 

forming sexual partnership 

2.05 

(0.21, 4.90) 

Table S2. Posterior distributions of inferred parameters. 
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Figure S2. Trace plots and the posterior distributions of the fitted parameters. 
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Cervical screening 

The Cervical Screening Programme (CSP) in Hong Kong was launched in 2004.[18] CSP 

recommends eligible women aged 25-64 to adopt 1-,1-,3-yearly cervical cytology screening, 

i.e. screening annually for their first two years of screening and then triennially if their 

screening results remain negative. The latest statistics from the Department of Health suggest 

that 70% of eligible women have had undergone screening at least once, 60% of whom have 

had their most recent screening episode during the last 3 years.[18] This finding is consistent 

with our previous survey in 2009.[19] As such, we make the following assumptions regarding 

the uptake of cervical cancer screening after CSP has launched in 2004: 

i. 70% of females begin screening when they reach age 25; 

ii. 60% of the females in (i) will then follow the 1-,1-,3-yearly screening; 

iii. The remaining 40% of (i) will attend screening annually in the first 2 years and then 

every 75 months afterwards.[19] 

 

We assume the following screening uptake before the launch of CSP [19]: 

i. 40% of females begin screening when they reach age 25 years since 1980 when 

cervical screening was introduced into systematic antenatal care in Hong Kong;[19,20] 

ii. 60% of the females in (i) attend screening regularly at 1- to 3-year interval;[19] 

iii. The screening uptake increases linearly from 40% in 1980 to 70% in 2004 when CSP 

was launched.[18] 

 

Table S3 summarizes (a) sensitivity and specificity of cervical cytology and (b) the 

probability of cytology results given the true health states assumed in our analysis.[21-23] 

Furthermore, we set the sensitivity of colposcopy to CIN1 and CIN2/3 lesions at 81%, based 
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on the findings from the two cervical screening trials in China.[24,25] We assume same 

sensitivity to CIN lesions as suggested by another overseas study.[26] We set the sensitivity of 

colposcopy to cervical cancer at 100%. We also set 100% sensitivity of biopsy to CIN lesions 

and cervical cancers. 
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Test characteristic for cervical cytology[21] Distribution References 

Sensitivity   

CIN1 T(0.70, 0.50. 1.00) [21] 

CIN2/3 T(0.80, 0.50. 1.00) [21] 

Cervical cancer T(1.00, 0.95, 1.00) Assumed 

Specificity T(0.95, 0.90. 1.00) [21] 

Table S3a. Probability distributions of cervical cytology testing. T(a,b,c) denotes 

triangular distribution that ranges from b to c with mode a. 

 

Probability of cytology results  

 True health states 

Cytology results Normal CIN1 CIN2/3 Cancer 

ASCUS 0.704 0.517 0.380 0.286 

LSIL 0.269 0.448 0.450 0.286 

HSIL 0.027 0.035 0.170 0.428 

Table S3b. Probability of cytology results given true health states. Abbreviations: 

ASCUS, atypical squamous cells of undetermined significance; CIN, cervical intraepithelial 

neoplasia; HSIL, high-grade squamous intraepithelial lesion; LSIL, low-grade squamous 

intraepithelial lesion. Ref.: [21-23]. 
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Cost parameters  

We estimate that the costs for screening and treatments based on the private charges in the 

public healthcare system (released by the Department of Health and listed in the 2013 

Gazette[27]) which accounts for approximately 90% of hospitalization in Hong Kong.[28] Table 

S4 summarizes the probability distributions of the costs used in our analysis. The underlying 

assumptions are provided below. 

 

The costs of screening comprise: 

1. The cost of cytology Pap smear for routine screening; 

2. The cost of colposcopy for the follow-up of low-grade squamous intraepithelial lesion 

(LSIL) and high-grade squamous intraepithelial lesion (HSIL) after abnormal Pap 

smear. 

3. Time and transportation cost for women to go to clinics for screening, where the time 

cost is based on the average income of females by age groups.[29,30] 

 

We estimate the treatment costs for CIN2/3 and cervical cancer based on public hospital 

charges for private patients with standard treatments (i.e. assuming that the public hospitals 

make these charges just for covering their costs instead of making profits).[27] The private 

charges for in-patients include the fees for general nursing, core pathology investigations, 

catering and also domestic services.[31] The treatment cost of cervical cancer comprises the 

cost of hospitalization for receiving Wertheim’s hysterectomy, brachytherapy, and overnight 

infusion chemotherapy. We assume 67.4% of the women who die from cervical cancer would 

receive palliative care with a mean hospitalization duration of 42.5 days.[32] 
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Cost Distribution (USD) References 

Cytology test N(67.9, 17) [27] 

Colposcopy + biopsy N(779, 195) [27] 

Treatment for CIN2 or CIN3 

     Loop electro-surgical excision procedure (LEEP) 
N(1869, 467) [27] 

Treatment for local cervical cancer 

     Wertheim’s hysterectomy 
N(13,914, 3,479) [27] 

Treatment for regional cervical cancer 

     Radiotherapy + chemotherapy + brachytherapy 
N(31,051, 7,763) [27] 

Treatment for distant cervical cancer 

     Palliative radiotherapy + palliative chemotherapy 
N(23,476, 5,869) [27] 

Palliative care (per day)  T(601, 479, 723) [27,32] 

Time cost (half day) N(30.1, 7.5) [33] 

Transportation  N(6.4, 1.6) [29] 

Table S4. Probability distributions of cost parameters. N(a,b) denotes normal distribution 

with mean a and standard deviation b. T(a,b,c) denotes triangular distribution that ranges 

from b to c with mode a. 
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Cost-benefit analysis 

We use the human capital approach to estimate the productivity loss incurred due to (i) 

screening, (ii) treatment for cervical intraepithelial lesions and cervical cancer, and (iii) 

premature death from cervical cancer.[34] These productivity losses comprise (i) loss of 

economic income that would have been earned by the individual and (ii) loss of workplace 

productivity (for the individual’s employer) that would have been averted if the individual 

has not experienced these events.[35] Nicholson et al. (2006) estimated that the absence of an 

employee would generate an extra loss of 61% times the employee’s income to the employer 

and thus to the entire society, i.e. a wage multiplier of 1.61.[35] When estimating productivity 

loss for different age groups, we adjust for the age-specific unemployment and labor force 

participation rate.[36] Specifically, given age group i, let wi be the average daily income for 

employed persons, rui be the unemployment rate, rfi  be the labor force participation rate, and 

mw be the wage multiplier. The adjusted potential daily productivity loss from a female in that 

age group i is (1 )i w fi uiw m r r .  

 

We make the following assumptions regarding the duration of productivity loss: 

1. Each episode of screening is associated with 2 days of absence from work: 1 day for 

attending screening and 1 day for reviewing the screening result. 

2. Each episode of CIN2/3 treatment is associated with 3 days of absence from work: 1 

day for receiving the treatment and 2 days for resting. 

3. Treatment of cervical cancer is associated with 6 months of absence from work for local, 

regional and distant stage.[8] 

4. Premature death from cervical cancer is associated with absence from work between 

the time of death and the average retirement age which we assume to be 65 years.[33] 
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Cost-effectiveness analysis 

When calculating quality-adjusted life-years (QALYs), we rely on health utility parameters 

from overseas HPV vaccination cost-effectiveness studies (Table S5) because analogous data 

are not available in Hong Kong.[21,37,38] QALY is estimated by summing women’s health 

utilities incurred throughout their lifetimes. We assume that there is no health utility loss for 

undiagnosed or asymptomatic cervical lesions and cervical cancer.[39] Health utility is 

reduced (i) upon abnormal screening results; (ii) upon diagnosis and treatment (if any) of 

CIN; and (iii) during treatment of cervical cancer. Furthermore, we assume that cancer 

survivors have lower health utilities for their first 5 years after recovery.[8] 

 

There is no consensus on willingness-to-pay threshold below which health interventions are 

deemed cost-effective in Hong Kong. As such, we use GDP per capita (approximately 

US$40,099 for Hong Kong during 2012-2016[40]), as the societal willingness-to-pay 

threshold. 
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Health utility Distribution References 

Screening N(0.98, 0.005) 

[38] 

ASCUS N(0.94, 0.015) 

[38] 

Normal colposcopy result N(0.95, 0.013) 

[38] 

CIN1 N(0.81, 0.022) 

[38] 

CIN2/3 N(0.87, 0.033) 

[38] 

Local cervical cancer T(0.65, 0.49, 0.81) 

[41] 

Regional cervical cancer T(0.56, 0.42, 0.70) 

[41] 

Distant cervical cancer T(0.48, 0.36, 0.60) 

[41] 

Cancer survivor T(0.62–0.97, 0.47–0.73, 0.78–0.99) 

[41] 

 

Table S5. Probability distribution of QALY weights for different health outcomes. N(a,b) 

denotes normal distribution with mean a and standard deviation b. T(a,b,c) denotes triangular 

distribution that ranges from b to c with mode a. Standard deviations for health utilities were 

based on the corresponding utility detriments from perfect health (i.e., 1) and an assumption 

of 0.25 coefficient of variation (CV).[42] 
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