Additional File 1: Geostatistical analysis

Model formulation

Let $Y_{i j}$ denote a random binary outcome associated with the j-th individual at the household location x_{i} and month t_{i}, taking value 1 for a positive PCR test for Plasmodium falciparum and 0 otherwise. Conditionally on a spatial Gaussian process $S\left(x_{i}\right)$, we model the probability of a positive PCR test, $p_{j}\left(x_{i}, t_{i}\right)$, using a probit-linear regression, i.e.

$$
\begin{equation*}
\Phi\left\{p_{j}\left(x_{i}, t_{i}\right)\right\}^{-1}=\alpha+\sum_{k=1}^{p} \beta_{k} d_{k}\left(x_{i}, t_{i}\right)+\gamma e_{i j}+S\left(x_{i}\right), \tag{1}
\end{equation*}
$$

where $e_{i j}$ is the age of the sampled individual, the $d_{k}\left(x_{i}, t_{i}\right)$ are a set of spatio-temporally referenced covariates (see Table 1) and (α, β, γ) are regression coefficients to be estimated.

We model $S(x)$ as an isotropic and stationary Gaussian process with covariance function given by

$$
\operatorname{cov}\left\{S(x), S\left(x^{\prime}\right)\right\}=\sigma^{2} \exp \left\{-\left\|x-x^{\prime}\right\| / \phi\right\}
$$

where σ^{2} is the variance of $S(x)$ and ϕ is a scale parameter which regulates how fast the spatial correlation decays to 0 for increasing distance.

We use Bayesian methods of inference with following set of independent priors:

- $\alpha \sim N\left(0,10^{3}\right)$;
- $\beta_{k} \sim N\left(0,10^{3}\right), k=1, \ldots, 4$;
- $\gamma \sim N\left(0,10^{3}\right)$;
- $\log \left\{\sigma^{2}\right\} \sim(0,2.5)$;
- $\log \{\phi\} \sim(\log 100,1)$.

We fit the model using a data-augmentation approach (Holmes \& Held, 2011) implemented in the PrevMap R package (Giorgi \& Diggle, 2017). Table 2 reports the posterior point and interval estimates for the model parameters.

Table 1: List of the spatio-temporally referenced explanatory variables.

Regression coefficient	Covariate
β_{1}	Rainfall (mm)
β_{2}	Distance from the closest waterway (m)
β_{3}	Distance from the main road (m)
β_{4}	Binary indicator of post-MDA year $(1=\mathrm{yes}, 0=\mathrm{no})$

References

Giorgi, E. \& Diggle, P. J. (2017). PrevMap: An R package for prevalence mapping. Journal of Statistical Software 78, 1-29.

Holmes, C. \& Held, L. (2011). Response to van der lans. Bayesian Anal. 6, 357-358.

Table 2: Posterior summaries from the model in (1), including the posterior mean and 95% credible intervals (CI).

	Poterior mean	95% CI
α	237.696	$(193.844,285.425)$
β_{1}	-0.002	$(-0.003,-0.001)$
$\beta_{2} \times 10^{3}$	-8.342	$(-10.526,-6.401)$
$\beta_{3} \times 10^{3}$	1.030	$(0.736,1.310)$
$\beta_{4} \times 10^{3}$	-3.339	$(-6.301,-0.729)$
γ	-0.119	$(-0.143,-0.097)$
σ^{2}	0.070	$(0.042,0.104)$
ϕ	102.506	$(47.099,192.768)$

