Additional File 1: Geostatistical analysis

Model formulation

Let Y_{ij} denote a random binary outcome associated with the *j*-th individual at the household location x_i and month t_i , taking value 1 for a positive PCR test for *Plasmodium falciparum* and 0 otherwise. Conditionally on a spatial Gaussian process $S(x_i)$, we model the probability of a positive PCR test, $p_j(x_i, t_i)$, using a probit-linear regression, i.e.

$$\Phi\{p_j(x_i, t_i)\}^{-1} = \alpha + \sum_{k=1}^p \beta_k d_k(x_i, t_i) + \gamma e_{ij} + S(x_i),$$
(1)

where e_{ij} is the age of the sampled individual, the $d_k(x_i, t_i)$ are a set of spatio-temporally referenced covariates (see Table 1) and (α, β, γ) are regression coefficients to be estimated.

We model S(x) as an isotropic and stationary Gaussian process with covariance function given by

$$cov\{S(x), S(x')\} = \sigma^2 \exp\{-\|x - x'\|/\phi\}$$

where σ^2 is the variance of S(x) and ϕ is a scale parameter which regulates how fast the spatial correlation decays to 0 for increasing distance.

We use Bayesian methods of inference with following set of independent priors:

- $\alpha \sim N(0, 10^3);$
- $\beta_k \sim N(0, 10^3), \ k = 1, \dots, 4;$
- $\gamma \sim N(0, 10^3);$
- $\log\{\sigma^2\} \sim (0, 2.5);$
- $\log\{\phi\} \sim (\log 100, 1).$

We fit the model using a data-augmentation approach (Holmes & Held, 2011) implemented in the PrevMap R package (Giorgi & Diggle, 2017). Table 2 reports the posterior point and interval estimates for the model parameters.

Table 1: List of the spatio-temporally referenced explanatory variables.

Regression coefficient	Covariate
eta_1	Rainfall (mm)
eta_2	Distance from the closest waterway (m)
eta_3	Distance from the main road (m)
eta_4	Binary indicator of post-MDA year (1=yes, 0=no)

References

GIORGI, E. & DIGGLE, P. J. (2017). PrevMap: An R package for prevalence mapping. *Journal of Statistical Software* 78, 1–29.

HOLMES, C. & HELD, L. (2011). Response to van der lans. Bayesian Anal. 6, 357-358.

Table 2: Posterior summaries from the model in (1), including the posterior mean and 95% credible intervals (CI).

	Poterior mean	95% Cl
α	237.696	(193.844, 285.425)
β_1	-0.002	(-0.003, -0.001)
$\beta_2 \times 10^3$	-8.342	(-10.526, -6.401)
$\beta_3 \times 10^3$	1.030	(0.736, 1.310)
$eta_4 imes 10^3$	-3.339	(-6.301, -0.729)
γ	-0.119	(-0.143, -0.097)
σ^2	0.070	(0.042, 0.104)
ϕ	102.506	(47.099, 192.768)