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FULL	  DESCRIPTION	  OF	  MODEL	  AND	  FITTING	  APPROACHES	  

Framework	  
	  

This model takes into consideration the proportion of the population susceptible to hepatitis 

B virus (HBV) infection (S), chronic (C) and acute (I) HBV carriers, the immune (R) and the 

vaccinated (V) (main article, Fig1A). We divided susceptible (S) and vaccinated (V) 

individuals into three subgroups representing infants (i, <1 years of age), children (c, 1-6 

years of age) and older individuals (comprising older children, adolescents and adults, a, >6 

years of age). We divided chronic carriers (C) into HBeAg-positive (C+) and HBeAg-negative 

(C-) to further allow for different parameterization between these two biologically distinct 

states.  

 

Natural decay of vaccine-mediated immunity and the effects of HIV sero-status on vaccine-

induced protection are also taken into account. We used a Bayesian Markov-chain Monte 

Carlo (bMCMC) approach to fit the dynamic model to the local demographic and 

epidemiological setting of Kimberley before projecting the impact of interventions. We used 

informative priors for model parameters for which robust literature support exists, and 

uninformative (uniform) priors otherwise. For full details on the model and fitting approach, 

see the Methods section. 

 

The following set of ordinary differential equations (ODE) is used to model the deterministic 

transmission of HBV under homogeneous mixing. Constant parameters informed by the 

literature and estimated parameters are described in further detail below. 
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We take into consideration the susceptible proportion of the population (Si, Sc, Sa, eq. 1-3), 

the chronic (C+, C-, eq. 6-7) and acute infections (I, eq. 4), the recovered and immune (R, eq. 

5) and the vaccinated (Vi, Vc, Va, eq. 8). Susceptible and vaccinated subgroups are divided 

into 3 main classes representing infants (Si, <1 years of age), children (Sc, 1-6 years of age) 

and older individuals (Sa, >6 years of age).  

 

Carriage	  and	  infection	  types	  
 

Carriers are represented by two chronic infection states depending on HBe-antigen status 

(designated C+ for HBeAg-positive and C- for HBeAg-negative), and I for acute infection. 

Individuals may acquire HBV at any of the age classes, developing chronic infection 

depending on age-associated risks: (1-ψ) for infants, (1-ε) for children, (1-γ) for older ages. 

We assume that the probability of developing chronic infections decreases with age, with 

ψ=0.15, ε=0.4, and γ=0.95 (1–3). When developing chronic infection, we assume that all 

individuals become HBeAg-positive but may lose this status and become HBeAg-negative at 

a rate θ (4). HBeAg-negative carriers may clear infection spontaneously at a rate ρ, entering 

the recovered class (R). Acute infections (I) are assumed to last 6 months (5) and are 

cleared at a rate σ, entering the recovered class (R).  
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Force	  of	  Infection	  
 

All carriers contribute to the force of infection (λ, eq. 11). It is assumed that chronic HBe-

antigen positive infections (C+) and acute infections (I) have a higher transmission rate (ββm) 

than chronic HBe-antigen negative infections (C-) (β) (6): 

 

Births	  and	  Mortality	  
 

The population is assumed to be of constant size with equal births b (eq. 12) and deaths (µ, 

µ’). Mid-year population estimates from 2016 published by Statistics South Africa (7) were 

used to underpin assumptions about life expectancy. Due to HBV-associated mortality, the 

lifespan of chronic HBeAg-positive (C+) individuals is taken to be lower (50 years) than the 

general lifespan (59 years (7)). In the absence of control, the total number of births (b) is 

divided into Z (eq. 13), W (eq. 14) and Z’ (eq. 17) depending on the probability of vertical 

transmission (A1, A2) and proportion vaccinated at birth (ωn). W is the proportion of babies 

born to infected mothers acquiring infection at birth or shortly after, and Z the proportion born 

susceptible.

 

Vertical	  Transmission	  
 

Vertical transmission takes place from mothers with chronic infections and is dependent on 

their HBe-antigen serostatus, with frequency of transmission α1 for HBeAg-positive (C+) and 

α2 for HBeAg- (C-). For interventions reducing vertical transmission, α1 and α2 are multiplied 

by (1-ζ), with ζ Є [0,1] being the impact of the intervention (eq. 15-16). For simplicity and 

lack of observations for appropriate parameterization, we assume that acute infections do 

not contribute to vertical transmission. 
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Routine	  vaccination	  
 

Routine vaccination is implemented under three general strategies: coverage of neonates 

(Z’, eq. 8, 17), coverage of 1-6 years old by vaccinating individuals leaving the susceptible 

<1 years old class (term cωcSi in eq. 9), and coverage of 6+ years old by vaccinating 

individuals leaving the susceptible 1-6 years old class (term aωaSc in eq. 10). In essence, we 

model vaccination occurring either at birth, or at particular ages (1 year, 6 years). 

 

Catch-‐up	  vaccination	  
 

For simplicity, catch-up is modelled in a single event (time step tcu), by moving a proportion 

of susceptible individuals into the age-corresponding vaccinated classes. In practice, this is 

an impulse event in the ODE system. Catch-up proportions are age-specific with parameters 

Ki for <1 years old, Kc for 1-6 years old, and Ka for 6+ years old. 

 

Bayesian	  markov-‐chain	  Monte-‐Carlo	  fitting	  approach	  
 

In two independent steps, we fit certain ODE model outputs to empirically observed 

variables in the South African population, to set demographic and transmission backgrounds 

before simulating intervention strategies. We apply a Bayesian Markov-chain Monte-Carlo 

(MCMC) approach, developed and used by us in other modelling studies (8,9). The proposal 

distributions (q) of each parameter are defined as Gaussian (symmetric), effectively 

implementing a random walk Metropolis kernel. We define our acceptance probability α of a 

parameter set ϴ given model ODE output y as: 

 
where ϴ* and ϴo are the proposed and current (accepted) parameter sets (respectively); п(y 

| ϴ*) and п(y | ϴo) are the likelihoods of the ODE output representing the (observed) 
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variables by each parameter set ϴ* and ϴo; p(ϴo) and p(ϴ*) are the prior-related 

probabilities given each parameter set. 

 

For simplicity and because all fitted variables are proportions, the likelihoods п were 

calculated as the product of conditional Gaussian probabilities (Pr{...}). The likelihood is the 

product the conditional probabilities of all variables. The likelihood can be formally 

expressed as: 

 

MCMC	  and	  model	  implementation	  
 

The mathematical ODE model and MCMC approach were developed in C/C++ (available as 

additional material which will be uploaded on manuscript acceptance). Visualisations were 

implemented in R. 

Fitting	  demographic	  background	  
 

Before considering transmission and interventions, we first fitted the model to a demographic 

background. This is done with the above described fitting approach without transmission (i.e. 

at t=0, I+C++C- = 0), using as target variables (Gaussian with standard deviation 1) the 

expected mean proportions of infants <1 years old (Si=0.022), children 1-6 years old 

(Sc=0.11) and older ages (Sa=0.868) in the population of study (taken from Census 2011 

(10)). We set the posteriors of the aging rates a and c, with median a=0.1337 (95% CI 

0.1330 - 0.1343) and median c=0.7536 (95% CI 0.7369 - 0.7709). We set the values of a 

and c to the median values of the posteriors for all other model results (fitting transmission 

background and simulating interventions).  

Fitting	  transmission	  background	  
 

After fitting demographic parameters and before considering interventions, we fitted the 

model to a transmission background. This is done using the above described fitting 

approach, with fixed aging rates a and c. The target variables are set to the percentage of 

the population that is HBsAg-positive (total carriers), percentage that are anti-HBc positive 

(R), and relative prevalences of chronic carriers HBeAg-positive (C+) and HBeAg-negative 

(C-) for the population of study. We used target Gaussian distributions (standard deviation 1) 

with mean 30% for anti-HBc, mean 8.3% for total carriers, mean proportion of 73% for 

HBeAg-negative and 23% for HBeAg-positive (6,11). In this step, the posteriors of the 

parameters β, ρ, α1, α2, θ and βm are obtained.  
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Fitted	  parameters	  and	  priors	  for	  transmission	  setting	  
 

We fitted six parameters for the local transmission setting (β, ρ, α1, α2, θ and βm). Gaussian 

informative priors are used for three parameters: frequency of vertical transmission α1 for 

HBeAg-positive (C+) with mean M=0.8 and standard deviation SD=0.05, the frequency of 

vertical transmission α2 for HBeAg- (C-) with M=0.25 and SD=0.05 (2,3,12,13), and the 

increased transmission factor for chronic HBe-antigen positive infections (C+) and acute 

infections (I) βm with M=10 and SD=2.5 (14–17). For β, ρ and θ uninformative, uniform priors 

are used with ranges of 0 to 30 for β and 0 to 1 for θ and ρ. In the main results we 

demonstrate that the posteriors for ρ and θ follow the scarce knowledge of these 

parameters. 

Simulating	  deterministic	  interventions	  
 

After fitting demographics and transmission backgrounds, when simulating deterministic 

interventions, we fix a, c, β, ρ, α1, α2, θ and βm to the obtained posterior medians. We vary 

combinations of the intervention parameters ωn, ωc, ωa, (routine coverage for different ages), 

Ki, Kc, Ka (catch-up coverages) and ζ (reduction in vertical transmission). The transmission 

dynamics without interventions are run until the population reaches equilibrium, effectively 

reproducing the desired proportions as used in Fitting transmission background, at which 

point interventions are started and the model is tracked for 1000 years. 

Simulating	  stochastic	  interventions	  
 

A stochastic version of the model presented in equations 1-10 was developed by introducing 

demographic stochasticity in state transitions. This followed a previously used strategy, in 

which multinomial distributions are used to sample the effective number of individuals 

transitioning between classes per time step (9,18,19). Multinomial distributions are 

generalized binomials – Binomial (n,p) - where n equals the number of individuals in each 

class and p the probability of the transition event (equal to the deterministic transition rate). 

Simulations followed the same approach as described for deterministic simulations (see 

above). However, for each combination of parameters defining the intervention, N=50 

stochastic simulations are run by sampling N times the posteriors of the parameters 

obtained in Fitting transmission background (β, ρ, α1, α2, θ and βm). This approach effectively 

takes into account demographic stochasticity and parameter (posterior) variation.	  
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Fitting	  of	  cohort	  data	  on	  HIV	  serostatus	  and	  HBV	  vaccine-‐induced	  protection	  
 

We started with the assumptions that (i) protection is either constant or decays with age, (ii) 

vaccine efficacy reported elsewhere for infants is representative of protection levels in the 

population cohort of 1 year olds (infants), and (iii) HIV status may alter protection levels and 

decay of vaccine-mediated protection over time (20).  

 

First, using a response threshold of ≥100 mIU/ml as a correlate of protection (20), we 

calculated the percentage of protected individuals in age 1, 2, 3, 4 and 5 years old, as 

available in the cohort data. Following assumption (i), we normalized the percentage of 

protected individuals in age by the percentage found for 1 year olds. Following assumption 

(ii) we multiplied this scaled variable ([0,1]) by an informed, literature-based baseline 

vaccine-induced protection (to infection) of 95% for HIV-negative infants and 75% for HIV-

positive infants (see (20) for a recent literature review). The transformed protection cohort 

series are shown in red on Fig S1A,B. The obtained efficacy in the age group of 1 year olds 

is seen to be ~95% for HIV- and ~75% for HIV+, as expected. 

 

We then used nonlinear weighted least-squares to fit the transformed protection cohort 

series (Fig S1AB) and projected protection in ages, with weights equal to the inverse of the 

(empirical) standard error for each age class (Fig S1C). The nonlinear model (Y~a*X^b) 

fitted the data closely (Fig S1A,B) for both HIV-positive and HIV-negative individuals (with 

resulting coefficients a=0.7842 b=-1.0477 for HIV-positive and a=0.95246 b=-0.05265 for 

HIV-negative). As reported elsewhere (20), projection of protection by age showed a 

significant difference depending on HIV serostatus, both in level of vaccine-mediated 

antibodies, and in decay of protection with age (Fig S1C).  

 

Modelled	  HBV	  vaccine-‐induced	  protection	  in	  the	  context	  of	  HIV	  status	  
 

Given that the age classes in the dynamic model are discrete (<1, 1-6, 6+ years of age) and 

for simplicity, we parameterized protection according to the predicted (Gaussian) 

distributions at the mean age of each age class in the model (Fig S1D). That is, we used the 

predicted mean (M) and standard deviation (SD) at ages 0.5, 3.5, 32,5 years as proxies for 

protection at model age classes <1, 1-6, 6+ years of age, respectively. The resulting 

distributions (shown in Fig S1D-F) were: HIV-negative aged <1y with M=0.952 and 

SD=0.024, aged 1-6y with M=0.892 and SD=0.023, aged 6+y with M=0.796 and SD=0.074; 

HIV-positive aged <1y with M=0.784 and SD=0.148, aged 1-6y with M=0.217 and 

SD=0.070, aged 6+y with M=0.031 and SD=0.039. These estimations were in accordance 
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with previous studies and pooled ranges reported (20). Note that these values equate to 

protection at the individual level of each age class, such that, for example, HIV-negative 

aged <1y with M=0.952 equates to a mean of 95.2% vaccine-induced protection in that age 

class. 

 

Vaccine-induced protection is modelled in the dynamic system using the term (1-∆x) in 

equations 4 and 7-10, where x relates to a specific age class. The term (1-∆x) therefore 

models a reduction in risk of infection, with ∆x being the protection offered by the vaccine. 

Given that vaccine-induced protection is dependent on HIV status, ∆x takes the following 

forms: 

 

 
 

Where Px
+ is the HIV prevalence at a certain age x, vx

+ the vaccine-induced protection at a 

certain age x for HIV-positive individuals, and vx
- the vaccine-induced protection at a certain 

age x for HIV-negative individuals (as determined in the approach detailed above). HIV 

prevalence levels used in the context of Kimberley were 1% for <1 years of age, 5% for 1-6 

years of age, and 15% for >6 years of age (based on communications with clinicians in 

South Africa, (21)). 

	  

Obtained	  posteriors	  for	  informed	  and	  uninformed	  parameters	  
 

The posterior for the rate of seroconversion from HBeAg-positive to HBeAg-negative (θ) 

suggested slow progression (Fig S1B), with a median period of ~18.5 years (95% CI [14.3, 

21.9]). We note here that although we used an uninformative (uniform) prior for θ, its 

posterior with median ~5.3% a year, here not accounting directly to age-specificity, is 

compatible with empirical estimations (22) of yearly rates of less than 2% for <3 years of age 

and 4-5% for older children (23), with ~90% of individuals acquiring HBV early in life 

remaining HBsAg-positive at the ages of 15-20 years (24).  

 

Spontaneous clearance of chronic HBV infection (loss of HBsAg) (ρ) was estimated to be 

even slower (Fig S1B), close to 0.3% a year (95% CI [0.04, 0.84]), slightly lower than 

reported rates of 0.7-2.26% previously observed in the literature (25–27), although there 

remains a lack of data for the African subcontinent.  
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ADDITIONAL	  SUPPLEMENTARY	  FIGURES	  (FIG	  S1-‐S6)	  

	  

Additional	   Supplementary	   Figure	   1	   (Fig	   S1):	   Posteriors	   from	   the	   Bayesian	  
Markov	  Chain	  Monte-‐carlo	  fitting	  to	  the	  Kimberley	  cohort	  data.	  
 
(A1-A2) Distributions of pre-intervention ODE model output at equilibrium for the fitted 
classes: (B1) carriers (I+C++C-, HBsAg+, salmon) and recovered (R, HBcAg+, green); (B2) 
relative proportions of HBeAg+ (C+, purple) and HBeAg- (C-, red) among chronic carriers 
(C++C-). Distributions of target variables (fitted, B1, B2) are obtained by running the 
deterministic model with 10,000 samples of the posteriors shown in subplots C-E. Dashed 
vertical lines present the target fitted proportions based on the SA cohort and literature 
reports (see Methods Section). (B-D) Posterior distributions for the fitted parameters (1.5 
million samples), with informative priors drawn with dashed red lines (1000 samples from 
distributions). Support results for the cohort data-driven approach related to HIV status and 
HBV vaccine-induced protection are in Additional Supplementary Fig S2.  
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Additional	   Supplementary	   Figure	   2	   (Fig	   S2):	   Fitting	   HBV	   vaccine	   response	  
according	  to	  HIV	  serostatus.	  
   
(A, B) Data on HBV vaccine response (see sections Waning of vaccine response with age, 
and Odds of developing an anti-HBs response) dependent on HIV serostatus. Data (points) 
and standard error (dashed) are shown in black for HIV+ (A) and purple for HIV- (B). Fit and 
95% CI is shown in red.  (C) Predicted HBV vaccine response dependent on HIV serostatus 
(HIV+ black, HIV- purple) across all ages. Dashed lines are the fitted 95% CI; dotted lines 
are the fitted standard deviation; solid bold lines are the fitted mean.  (D, E) Boxplots in red 
show distributions obtained with 10,000 samples from a gaussian distribution with mean and 
standard deviation equal to the point prediction at mean ages of each age class in the 
dynamic model (0.5 years for class <1 years old, 3.5 years for class 1-6 years old, 32.5 
years for age 1231 class 6+ years old). Distributions in subplot D are for HIV individuals and 
in subplot E are for HIV+ individuals. Red dots show the gaussian sampled standard 
deviation (which is seen approximating the fitted standard deviation).  (F) Summary of the 
distributions found in subplots D and E according to HIV serostatus and later used in the 
dynamic model (HIV- in purple with <1y mean=0.952 std=0.024, 1-6y mean=0.892 
std=0.023, 6+y mean=0.796 std=0.074; HIV+ in black with <1y mean=0.78 std=0.148, 1-6y 
mean=0.217 std=0.070, 6+y mean=0.031 std=0.039).  (A-C) For fit details refer to methods 
section. 
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Additional	  Supplementary	  Figure	  3	  (Fig	  S3):	  Sensitivity	  of	   interventions	  with	  
deterministic	  output.	  
  
Impact of (A) neonate vaccination (ω n), (B) vaccination at 6 years of age (ω a), and (C) 
PMTCT (ζ), on HBV prevalence (HBsAg) in time. The coverage / effort of simulated 
interventions quantified on the color scale to the right from 0 (no coverage / effort) to 1 (full 
coverage / effort). Impact is quantified by post-intervention reductions in HBV prevalence 
(HBsAg). Impact is highest for neonate vaccination, followed by PMTCT and lastly 
vaccination at 6 years of age for the same intervention effort. Simulations use the median 
parameter values of the posteriors shown in Support Figure 1. Results with stochastic 
simulations are presented in other figures of the main text and this additional file. 
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Additional	   Supplementary	   Figure	   4	   (Fig	   S4):	   Post-‐intervention	   stochastic	  
impact	   on	   HBV	   prevalence	   (HBsAg),	   with	   time	   to	   reach	   sustainable	  
development	   goals	   when	   using	   routine	   neonatal	   vaccination	   and	   PMTCT	  
independently.	  	  
 
(A, B) Impact (reduction) on HBV prevalence (HBsAg) (A) and time to reach sustainable 
development goal (SDG) goal (B) for varying coverage of neonates.  (C, D) Impact 
(reduction) on HBV prevalence (HBsAg) (C) and time to reach SDG (D) for varying PMTCT.  
(All subplots) Intervention coverage / effort varies from 0.25 to 1 (as colored and named in 
subplot A). (A, C) Lines are the mean and shaded areas are the standard deviation of model 
output when running 50 stochastic simulations per intervention (sampling the posteriors 
shown in Figure 1). (B, D) Beige areas mark interventions reaching SDGs after 500 years on 
average. Boxplots show the variation of the 50 stochastic simulations. Numbers above and 
below boxplots show the 2.5% lower and 97.5% upper limits of the solutions. The SDG is 1 
in a 1000 individuals. Compared to Figure 4 in the main text: measuring impact with SDG 
on HBV incidence (HBsAg) (as opposed to HBV prevalence) results in more optimistic 
projections, i.e. shorter times to SDG (compare Figure 4 A2, C2 with this figure subplots B, 
D). PMTCT is unable to present solutions reaching the SDG for HBV prevalece (HBsAg) in 
500 years (D).	   	  
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Additional	  Supplementary	  Figure	  5	  (Fig	  S5):	  Sensitivity	  of	  mean	  intervention	  
impact	   on	   HBV	   incidence	   (HBsAg)	   and	   HBeAg+	   prevalence,	   with	   estimated	  
mean	   year	   to	   reach	   sustainable	   development	   goals	   for	   combinations	   of	  
routine	  +6	  years	  vaccination	  and	  PMTCT.	  	  
 
(A1-A2) Mean impact of interventions on  HBV incidence (HBsAg) (A1) and mean time to 
reach sustainable development goals (SDGs) (A2).  (B1-B2) Mean impact of interventions 
on HBeAg+ prevalence (B2) and mean time to reach SDG (B2). (All subplots) Impact is 
shown as percent reduction in incidence or prevalence compared to pre-intervention levels 
(e.g. 50 indicates a 50% reduction compared to last time step before intervention start).  
HBV incidence (HBsAg) SDG is set to a reduction of 90%. HBeAg+ prevalence SDG is set 
to 1 in a 1000 individuals. Mean results are obtained from 50 stochastic simulations per 
intervention combination (vaccination, PMTCT) with parameters sampled from the posteriors 
shown in Figure 1. Start of interventions in the stochastic simulations is in year 1995 to 
simulate an appropriate time scale to address impact by 2030. Compared to Figure 5 main 
text: the combination of PMTCT and routine vaccination of +6 years is highly suboptimal, 
with perfect routine coverage and PMTCT (top right cell, subplots A1, B1) achieving 
reductions of  HBV incidence (HBsAg) and HBeAg+ prevalence by 2030 similar to half the 
vaccination coverage for neonates and half the PMTCT effort seen in Figure 5 (top right cell, 
subplots A1, B1), for example.	   	  
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Additional	  Supplementary	  Figure	  6	  (Fig	  S6):	  Sensitivity	  of	  mean	  intervention	  
impact	   on	   HBV	   incidence	   (HBsAg)	   and	   HBeAg+	   prevalence,	   with	   estimated	  
mean	   year	   to	   reach	   sustainable	   development	   goals	   for	   combinations	   of	  
routine	  neonatal	  vaccination	  and	  PMTCT	  plus	  a	  complete	  catch-‐up	  campaign.  
 
(A1-A2) Mean impact of interventions on HBV incidence (HBsAg) (A1) and mean time to 
reach sustainable development goals (SDGs) (A2). (B1-B2) Mean impact of interventions on 
HBeAg+ prevalence (B1) and mean time to reach SDG (B2). (All subplots) Impact is shown 
as percent reduction in incidence or prevalence compared to pre-intervention levels (e.g. 50 
is 50% reduction compared to last time step before intervention start). HBV incidence 
(HBsAg) SDG is set to a reduction of 90%. HBeAg+ prevalence SDG is set to 1 in a 1000 
individuals. Mean results are obtained from 50 stochastic simulations per intervention 
combination (vaccination, PMTCT) with parameters sampled from the posteriors shown in 
Figure 1. Start of interventions in the stochastic simulations is in year 1995 to simulate an 
appropriate time scale to address impact by 2030. Complete catch-up campaign is a one-off 
event with 100% coverage of all susceptible individuals in the population at the start of 
interventions.  Compared to Figure 5 main text: adding 100% catch-up campaign to the 
interventions in Figure 5 is beneficial, for which the highest reductions of HBV incidence 
(HBsAg) and HBeAg+ prevalence by 2030 are achieved, as well as the shorter times to 
SDG. However, 100% catch-up is logistically and economically not feasible and the added 
benefits are small. For example, with complete neonatal coverage and PMTCT (top right 
cell, subplots A1, B1), the catch-up campaign would only add <5% in the mean reduction of  
HBV incidence (HBsAg) and HBeAg+ prevalence up to year 2030 (compare to top-right cells 
of subplots A1 and B1 in Figure 5).	  
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