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Supplementary Information: Additional methods
Model details
Group-level coefficients are assumed to be correlated between responses, y, such that µhj ∼MVN (0,ΩG) ,
where MVN is a multivariate normal distribution, with covariance matrix ΩG. The model was fitted in
a Bayesian framework using the brms R package [1], which is built upon Stan MCMC software that uses
the No-U-Turn sampler (NUTS) - a dynamic variant of Hamiltonian Monte Carlo [2]. Non-informative
normal priors were assigned to the fixed intercepts, β0, (Normal (0, 10)), vector of effect size coefficients,
β, (Normal (0, 5)) and group-level intercept standard deviations, µhj , (Normal (0, 10)). Non-informative
normal prior standard deviations were chosen to be suitably large based on preliminary model fitting. The
covariance matrix ΩG was decomposed into the product of a correlation matrix ΣG and a diagonal matrix
whose diagonal elements are scale coefficients τ : ΩG = τΣGτ . The correlation matrix was assigned an LKJ
prior (ΣG ∼ LKJ (1)), representing a uniform distribution over all possible (4× 4) correlation matrices; each
element of the scale vector was assigned independent Student-t priors with mean zero, a scale of 1, and 4
degrees of freedom. The multivariate structure of the model allows correlation coefficients for cluster-level
effects to be estimated, while adjusting for other covariates, and also allows for direct comparisons of effect
sizes for covariates between outcomes of interest [3].

Model checking: convergence and goodness of fit

All models were fitted with four chains started from random initial positions within parameter space. Models
were run for 4000 iterations after 500 “warm-up’ ’ iterations. Convergence was assessed visually as well as
quantitatively using the Rhat statistic [4], with model runs with Rhat<1.1 diagnosed as converged.

Model goodness of fit was assessed with posterior predictive checks (PPCs), which compare the distribution
of model predictions and observed data [5]. These were conducted at the response level and disaggregated
spatially and by covariates of interest. The Bayes p-value was used to summarise fit and is defined as,
Bayes p = P (yresponse > ydata) where values 0.05 < Bayes p < 0.95 were considered a reasonable fit.
Additionally, receiver operating characteristic (ROC) curves were plotted for each country and response for a
range of cut points (which determine the threshold probability where the response flips from 0 to 1). The
area under the ROC curve indicates the probability that the model would correctly rank (order the response)
a given pair of observations and can be used as a summary statistic of a given model’s discriminatory ability
[6]. For outputs see sections under Model fit.
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Estimating the proportion of children with multiple conditions under the as-
sumption of independence
Assume that the probabilities of fever, pf , diarrhoea, pd, ARI, pa and wasting pw, are independent and set
at the average probability across all data sets. The probability of a child having a single, double or triple
condition is therefore:

p (1 condition| pf , pd, pa, pw) = pf (1− pd) (1− pa) (1− pw)+(1− pf ) pd (1− pa) (1− pw)+(1− pf ) (1− pd) pa (1− pw)+
(1− pf ) (1− pd) (1− pa) pw

p (2 conditions|pf , pd, pa, pw) = pfpd (1− pa) (1− pw) + pf (1− pd) pa (1− pw) + (1− pf ) pdpa (1− pw) +
pf (1− pd) (1− pa) pw + (1− pf ) pd (1− pa) pw + (1− pf ) (1− pd) papw

p (3 conditions|pf , pd, pa, pw) = (1− pf ) pdpapw + pf (1− pd) papw + pfpd (1− pa) pw + pfpdpw (1− pw)

p (4 conditions| pfpdpapw) = pfpdpapw
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