Health inequities and clustering of fever, acute respiratory infection, diarrhoea and wasting in children under five in low- and middle-income countries: A Demographic and Health Surveys analysis.

Supplementary Information: Additional methods

Model details

Group-level coefficients are assumed to be correlated between responses, y, such that $\mu_{h j} \sim M V N\left(0, \Omega_{G}\right)$, where MVN is a multivariate normal distribution, with covariance matrix Ω_{G}. The model was fitted in a Bayesian framework using the brms R package [1], which is built upon Stan MCMC software that uses the No-U-Turn sampler (NUTS) - a dynamic variant of Hamiltonian Monte Carlo [2]. Non-informative normal priors were assigned to the fixed intercepts, $\beta_{0},(\operatorname{Normal}(0,10))$, vector of effect size coefficients, $\beta,(\operatorname{Normal}(0,5))$ and group-level intercept standard deviations, $\mu_{h j},(\operatorname{Normal}(0,10))$. Non-informative normal prior standard deviations were chosen to be suitably large based on preliminary model fitting. The covariance matrix Ω_{G} was decomposed into the product of a correlation matrix Σ_{G} and a diagonal matrix whose diagonal elements are scale coefficients $\tau: \Omega_{G}=\tau \Sigma_{G} \tau$. The correlation matrix was assigned an LKJ prior $\left(\Sigma_{G} \sim L K J(1)\right)$, representing a uniform distribution over all possible (4×4) correlation matrices; each element of the scale vector was assigned independent Student-t priors with mean zero, a scale of 1 , and 4 degrees of freedom. The multivariate structure of the model allows correlation coefficients for cluster-level effects to be estimated, while adjusting for other covariates, and also allows for direct comparisons of effect sizes for covariates between outcomes of interest [3].

Model checking: convergence and goodness of fit

All models were fitted with four chains started from random initial positions within parameter space. Models were run for 4000 iterations after 500 "warm-up' 'iterations. Convergence was assessed visually as well as quantitatively using the Rhat statistic [4], with model runs with Rhat <1.1 diagnosed as converged.

Model goodness of fit was assessed with posterior predictive checks (PPCs), which compare the distribution of model predictions and observed data [5]. These were conducted at the response level and disaggregated spatially and by covariates of interest. The Bayes p-value was used to summarise fit and is defined as, Bayes $p=P\left(y_{\text {response }}>y_{\text {data }}\right)$ where values $0.05<$ Bayes $p<0.95$ were considered a reasonable fit. Additionally, receiver operating characteristic (ROC) curves were plotted for each country and response for a range of cut points (which determine the threshold probability where the response flips from 0 to 1). The area under the ROC curve indicates the probability that the model would correctly rank (order the response) a given pair of observations and can be used as a summary statistic of a given model's discriminatory ability [6]. For outputs see sections under Model fit.

1. Bürkner P-C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J [Internet]. 2018;10:395-411. Available from: http://arxiv.org/abs/1705.11123
2. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A Probabilistic Programming Language. J Stat Softw [Internet]. 2017;76. Available from: http://www.jstatsoft.org/v7 6/i01/
3. Baldwin SA, Imel ZE, Braithwaite SR, Atkins DC. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models. J Consult Clin Psychol. 2014;82:920-30.
4. Gelman A, Rubin D. Inference from Iterative Simulation Using Multiple Sequences. Stat Sci. 1992;7:457511.
5. Lambert B. A Students Guide to Bayesian Statistics. SAGE Publications Ltd; 2018.
6. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Prediction models: a framework for some traditional and novel measures. Epidemiology. 2013;21:128-38.

Estimating the proportion of children with multiple conditions under the assumption of independence

Assume that the probabilities of fever, p_{f}, diarrhoea, p_{d}, ARI, p_{a} and wasting p_{w}, are independent and set at the average probability across all data sets. The probability of a child having a single, double or triple condition is therefore:
$p\left(1\right.$ condition $\left.\mid p_{f}, p_{d}, p_{a}, p_{w}\right)=p_{f}\left(1-p_{d}\right)\left(1-p_{a}\right)\left(1-p_{w}\right)+\left(1-p_{f}\right) p_{d}\left(1-p_{a}\right)\left(1-p_{w}\right)+\left(1-p_{f}\right)\left(1-p_{d}\right) p_{a}\left(1-p_{w}\right)+$ $\left(1-p_{f}\right)\left(1-p_{d}\right)\left(1-p_{a}\right) p_{w}$
$p\left(2\right.$ conditions $\left.\mid p_{f}, p_{d}, p_{a}, p_{w}\right)=p_{f} p_{d}\left(1-p_{a}\right)\left(1-p_{w}\right)+p_{f}\left(1-p_{d}\right) p_{a}\left(1-p_{w}\right)+\left(1-p_{f}\right) p_{d} p_{a}\left(1-p_{w}\right)+$ $p_{f}\left(1-p_{d}\right)\left(1-p_{a}\right) p_{w}+\left(1-p_{f}\right) p_{d}\left(1-p_{a}\right) p_{w}+\left(1-p_{f}\right)\left(1-p_{d}\right) p_{a} p_{w}$
$p\left(3\right.$ conditions $\left.\mid p_{f}, p_{d}, p_{a}, p_{w}\right)=\left(1-p_{f}\right) p_{d} p_{a} p_{w}+p_{f}\left(1-p_{d}\right) p_{a} p_{w}+p_{f} p_{d}\left(1-p_{a}\right) p_{w}+p_{f} p_{d} p_{w}\left(1-p_{w}\right)$
$p\left(4\right.$ conditions $\left.\mid p_{f} p_{d} p_{a} p_{w}\right)=p_{f} p_{d} p_{a} p_{w}$

