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1. Supplementary Methods

Processing of Comorbidities and Other Clinical Predictors

Comorbidities were recorded in ICD-10 format. To reduce features and
summarize similar diseases we mapped ICD-10 codes to PheWas Codes. We

[13

accessed https:/phewascatalog.org/” in October 2021 and downloaded
“PheCodeMap 1.2”. From a total of 7817 unique ICD-10 codes in our dataset,
3030 could be mapped directly to PheCodes. To further improve this coverage
we performed an additional stepwise mapping: the 4787 ICD-10 codes that
could not be mapped were shortened to 4 characters (e.g. N18.89 was shortened
to N18.8) and mapped again to PheCodes. Unmapped ICD-10 codes after this
step were shortened to 3 characters (e.g. N18.8 shortened to N18) and mapped
again to PheCodes, resulting in a total of 6676 mapped ICD-10 codes. Most
frequent ICD-10 codes that were not mapped to PheCodes included codes from
the Z-chapter that were considered outside the area of interest of this study and
were discarded after this step. Total coverage of the mapping is 85% (mapped
ICD-10 codes/unmapped ICD-10 codes) resulting in 1481 unique PheCodes
(Supp Fig. 1A). We calculated patient frequencies in the HF cohort for these

PheCodes and only analyzed PheCodes with at least 50 patients, reducing the

features to 569 PheCodes (Supp Fig. 1B).

OPS codes were used to determine heart transplant patients (5-375, together
with ICD-10 code Z94.1), patients that were intubated (8-701, 8-704, 8-706,
8-852), patients that underwent percutaneous coronary intervention (8-83) and

patients that underwent anit-arrhythmic device implantation (5-378, 5-377).


https://phewascatalog.org/

The Elixhauser index was calculated per patient using the comorbidity
R-package [19]. Laboratory values for low-density lipoprotein (LDL),
high-density lipoprotein (HDL), triglycerides, and total cholesterol were
obtained. For each measure minimal quality control was performed to remove
values that were negative or extreme (values greater than 400 for LDL, 150 for
HDL, 600 for triglycerides were removed). Heights and weights were also
obtained for individuals in the HF population. After cleaning to remove
implausible values, heights and weights on the same day were used to calculate
body mass index (BMI). BMIs greater than 70 were excluded, and a median BMI

was calculated for each patient.

Patient classifier

Random forest and regularized logistic regression were fit to predict HFpEF and
HFrEF cohort labels on 569 PheCodes. For hyperparameter tuning, we
performed 10 fold cross validation of 90-10% training -test splits and selected
hyperparameter values yielding highest mean AUROC. Hyperparameters
include the ratio of L1/L2 regularization and penalty for elastic net and number
of variables (mtry) and number of trees in random forest. The highest achieved
mean AUROC is reported as an estimate for the model test error (Supp Fig. 2A,
B). For model interpretation, we then performed a model fit on the full data
using the best estimated hyperparameters. From these models we analyzed
feature importances (random forest) and parameter estimates (elastic net) (Fig.

S2C).


https://sciwheel.com/work/citation?ids=7036947&pre=&suf=&sa=0

Comorbidity profile assignment compared for effects of age, sex, time to HF

diagnosis and time of recording

Age and Sex

We selected the comorbidity profiles of HFpEF and HFrEF (i.e. top 100
comorbidities from the patient classifier) and tested each in an independent
logistic regression model while including age and sex as covariates for
association with HF subtype label (HFpEF/HFrEF ~ comorbidity + sex + age). We
fit these models on the full cohort data and found that the coefficients assigned
to the comorbidities to be consistent with the patient classifier assignments

(Supp Fig. 4A, column “full data”).

Time to HF diagnosis

We investigated whether the comorbidity profiles of HFpEF or HFrEF were
different in regard to the time point of the patient’s first HF diagnosis. We
calculated the time to HF diagnosis in months and found that most
comorbidities were recorded within a year of the first HF diagnosis, which is
most likely related to the nature of routine clinical care data from a tertiary care
provider than with the true time point of comorbidity occurence. Nevertheless,
HFpEF patients received their comorbidities later than HFrEF patients
(Wilcoxon’s test p<0.05) (Fig. S4B).

We next subset the data for each patient to his comorbidities recorded at least 6
months before (pre HF) or after (post HF). On these subsets we again fitted the
logistic regression model (HFpEF/HFrEF ~ comorbidity + sex + age) and found a

conserved assignment of comorbidities. This indicated that comorbidity



assignment to HFpEF or HFrEF was rather independent of the time point of HF

diagnosis (Fig. S4A).

Date of comorbidity assignment

Recording of comorbidities is subject to clinical practice that may change over
time. We thus compared the dates of comorbidity assignments and found that
HFpEF patients recorded more recent diagnosis compared to HFrEF patients
(Supp Fig. 4C). To investigate if this difference in time of recording impacted
our comorbidity profile assignment we stratified our observation window into
three time blocks. We again fit the logistic regression models (HFpEF/HFrEF -~
comorbidity + sex + age) for each time block separately and observed that the
assignment of most comorbidities was not dependent on the observation

window (Supp Fig. 4A).

Comorbidity network clustering

To identify disease communities (DCs) within the network we applied different
clustering algorithms. We assumed that if different clustering algorithms detect
similar structures, these structures could be more reliable. We compared
different cluster algorithms based on the shared information between the
assigned cluster labels (normalized mutual information and adjusted Rand
Index) as well as modularity scores and module size and number. The Leiden
algorithm[20] achieved the highest adjusted Rank index and normalized mutual
information scores when compared to other tested algorithms (Fig. S7A-E). We

then tested different resolution parameters of the Leiden algorithm and selected


https://sciwheel.com/work/citation?ids=6947194&pre=&suf=&sa=0

a parameter of 1.1 that yielded multiple clusters and maintained a high network
modularity score and high normalized mutual information values (Fig. S7F).

To represent patients based on their disease profile similarity with the network's
DCs, we calculated Jaccard indices for each patient and DC and performed
unpaired, two-sided Wilcoxon’s rank sum test to test for differences between

patient cohorts.

Disease network comparison

We compared the Heart Failure Comorbidity Network (HFnet) with two other
disease networks. We downloaded network data from Morbinet
(https:/shiny.odap-ico.org/morbinet, accessed October 2021) [I1], using a
threshold of OR>1 and fisher p value of p<0.01 and mapped the ICD-10 disease
ontology to PheCodes. As a second network, we built a phenotypic disease
network, where two diseases are connected, if they share a similar phenotype
based on the human phenotype ontology (HPO) [29]. To construct this network,

we downloaded the HPO from https:/hpo.jax.org/app/ (accessed October 2021)

and mapped disease ontologies to Phecodes. Disease similarity was calculated
with Lin’s methods implemented in the OntologySimilartiy R-package [21]. The
full distance matrix resulting from the ontology similarity was used to create a
fully connected network with edge weight representing ontology similarity.
From this network we extracted the backbone [22] with the implementation in
the corpustools R-package. This backbone extraction is based on an assumed null
distribution of local edge weights where based on an alpha level (here 0.05)

edges can be extracted that are unlikely to fall into that distribution.


https://shiny.odap-ico.org/morbinet
https://sciwheel.com/work/citation?ids=9309931&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10116939&pre=&suf=&sa=0
https://hpo.jax.org/app/
https://sciwheel.com/work/citation?ids=2983666&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2887513&pre=&suf=&sa=0

For network comparison, Jaccard indices of Nodes and Edges were calculated
(Fig. S8B,C) on different subgraphs of HFnet, Morbinet and HPOnet. DeltaCon
measures graph distance of two graphs with the same set of nodes. It first
calculates pairwise node affinities via Fast Belief Propagation in each network
and in the second step measures distance between both affinity matrices via root
euclidean distance [23]. We subsetted HFnet nodes to match Morbinet and
HPOnet and calculated DeltaCon distances. Furthermore, we rewired each
HFnet subset five times with an increasing probability and computed DeltaCon

similarity with the original HFnet (Supp. Fig 8D).

Disease prediction metrics

The mapping of UMLS codes in DisGeNET to ICD-10ICD10 and PheCodes led
to few diseases having assigned the same or highly similar gene sets. To avoid
overfitting by disease neighbors with highly similar gene-disease pairs, we
calculated a binary distance (Jaccard index) between all DisGeNET gene sets.
For the internal validation of a disease-gene prediction, we then removed all
other gene associations of diseases that were highly similar to the target gene set

(jaccard distance cutoff 0.5) (Fig. S9B).

To evaluate gene prediction success, we used three different metrics: median
rank ratio, AUROC and AUCPR.

For the median rank ratio, we calculated the median rank of the target gene set
in the RW ranking and divided this rank by the total length of the ranking. This
metric is close to O if the genes are located towards the top, and close to 1 if they

are located close to the bottom of the ranking.


https://sciwheel.com/work/citation?ids=13901273&pre=&suf=&sa=0

AUROCs and AUCPRs were calculated with the R-package pROCroc. Each target
gene was considered as a true positive, others were true negatives and the
assigned RW probabilities were used to calculate area under the ROC and PR
curves. AUC-PRs tend to be very low, due to the high number of non-target
genes in the top of the ranking that leads to a drop in precision. This in part is
wanted for disease gene prediction, as these true negative genes could rather be
unknown potentially relevant candidates. AUROCs can be inflated when small
gene sets are recovered in the top of the ranking. We assessed this bias by

correlating gene set size to performance metric (Fig. S9B).

To assess whether link prediction performance is dependent on HFnet topology,
we repeated the internal validation process, described above with rewired edges
in the HFnet. Network rewiring was performed with the igraph R-package, using

rewire() and each_ edge() functions.

Heart failure gene sets

General HF associated genes were curated by collecting genes from various
resources: We selected prior knowledge sources including 1) DisGeNet genes
associated to Heart Failure with confidence score >0.29; 2) Literature curated
[24], 3) Kegg disease database, dilated cardiomyopathy related pathways [34] and
data driven resources including 4) Cardiovascular Disease Knowledge portal, top
common variants for Heart Failure [30]; 5) Cardiovascular Disease Knowledge

portal, top single variants for Heart Failure [30] (https:/cvd.hugeamp.org/,

accessed August 2022); 6) ReHeaT top 500 conserved genes from end stage

heart failure meta-analysis [25, 33]. 7) PheWAS gene sets associated with Heart
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Failure (p<0.05, Odds ratio>1) [31, 32] (https:/phewascatalog.org/ , accessed
August 2022).

L-NAME/ HFD mouse model and RNA sequencing

Animal Use Approval and Ethics. Animal model experiments were performed in
accordance with the European Community guiding principles in the care and
use of animals (2010/63/UE, 22 september 2010) as approved by by the
Niedersachsisches Landesamt fur Verbraucherschutz und

Lebensmittelsicherheit (G42-21, Baden-Wirttemburg, Germany).

Animal Model. 12-week-old C57BL/6N male mice were bred at the
Universitatsklinikum Heidelberg Klinisch Experimenteller Bereich mouse
facility. Mice were given ad libitum access to the combination of high-fat chow
and N(w)-nitro-L-arginine methyl ester (L-NAME, 0.5 g/L, pH = 74,
Sigma-Aldrich) (HFD-LNAME) or control chow diet for a duration of 9 weeks (n
= 4), as previously described (Fig. S11) [36]. Female mice were not used owing to
their protection against diastolic dysfunction in response to HFD-LNAME
feeding [37]. All cohorts of mice were group-housed (<3 mice/cage) on a 12:12-h
light-dark cycle from 06:00 to 18:00 at 25 + 1°C and constant humidity with ad
libitum access to either standard chow (2916, Teklad) or HFD (58.0 kcal’% fat,
D12492) and water.

RNA-sequencing. Following 9-week treatment with HFD-LNAME, total RNA was
isolated from left ventricular mouse heart tissue using TRIzol™ Reagent
(ThermoFisher, USA), subsequently tested for quality using a Bioanalyzer 2100

(Agilent) to ensure RIN > 9. Total RNA was depleted from ribosomal RNA,

polyA-enriched, fragmented, and paired-end sequenced at the European


https://sciwheel.com/work/citation?ids=1412051,14876754&pre=&pre=&suf=&suf=&sa=0,0
https://phewascatalog.org/
https://sciwheel.com/work/citation?ids=6788216&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13225646&pre=&suf=&sa=0

Molecular Biology Laboratory (EMBL). Alignment of reads were mapped to the
latest Ensembl C57BL/6N] annotation (c57bl_6N]_107.gtf) to quantify transcripts.
Alignment was performed using STAR (2.7.10a) [38].
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2. Supplementary Figures
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Fig. S1. ICD10 code mapping.
A) Number of features recorded in the general HF cohort. PheCodes and

3-letter ICD10-codes reduce the feature space to a comparable feature size. C)
Overview of all recorded PheCodes and their frequency (loglO transformed).
PheCodes with a prevalence of at least 50 patients (horizontal grey line) resulted
in 569 Phecodes (vertical grey line). These PheCodes were used in all

downstream analysis.
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A) Hyperparameter tuning for the elastic net model. Mixture of L1 and L2
penalty (color) and penalty value (x-axis) are compared by accuracy and
AUROC. Each hyperparameter combination was assessed via 10-fold CV-splits.
B) Hyperparameter tuning for random forest model. Number of trees (color)
and mtry (x-axis) are compared by accuracy and AUROC. Each hyperparameter
combination was assessed via 10-fold CV-splits. C) Comparison of random
forest feature importance (y-axis) with Elastic net coefficient estimates (x-axis).
D) Forward selection training of L1- regularized logistic regression by stepwise
including parameters to the model (x-axis) and estimating a 10-fold CV AUROC

(y-axis).
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Fig. S3. Parameter estimates from the patient classifier.
The parameters are the absolute fitted values of the coefficients in the elastic net

model for each comorbidity of the patient classifier separated by association to
HFpEF (top) or HFrEF features (bottom). Colors indicate disease category using
the same color legend as in panel B.
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Fig. S4. Time to HF and time of comorbidity profile assignment.
A) Comparing the comorbidity assignment to HF subtypes (y-axis) in different

data subsets (x-axis). Logistic Regression models were fit without regularization
for each comorbidity separately to predict HF subtype labels (HFpEF/HFrEF ~
comorbidity + age + sex). First column contains the comorbidity estimates from
the full data set. Second block displays comorbidity estimates form the data
subset to comorbidities with earliest diagnosis at least six months before (pre
HF) or six months after the first HF diagnosis (post HF). The third block displays
comorbidity estimates from data subset to three different observation windows.
B) Distribution of the time in months between earliest comorbidity diagnosis
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and earliest HF diagnosis compared between HF cohorts (p-value, unpaired
two-sided Wilcoxon test). Dotted gray lines are each 12 months apart. C)
Distribution of recording dates of comorbidities in HF subtype cohorts over the
observation window (2008-2021) (p-value, unpaired two-sided Wilcoxon test).
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Fig. S5. Comparison of comorbidities between HFpEF and HFrEF cohort.

A) Pairwise disease odds ratios and Fisher's exact test p-values (with BH
correction) were calculated for HFpEF and HFrEF patient cohorts separately.
Pearson correlation of odds ratios between both cohorts was ~1 with p<0.01. B)
Comparison of all tested disease pairs at fisher test p<0.0001. C) Breslow dayes
test for homogeneity of odds ratios was applied and significant disease pairs (p<
0.01) are shown with odds ratios for each cohort (heatmap) and log transformed
corrected p-value (barplot).
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Fig. S6. HFnet overview.

A) Phi correlation and log odds ratio of pairwise disease comparison in the
general HF cohort. B) Adjustment of phi-correlation. Correlation coefficients
were scaled by disease. As low prevalence diseases are expected to result in
lower phi-correlation coefficients and scaling by mean coefficient can address
this effect. The calculated weights were used as edge weights in the HFnet. C)
HFnet plotted and clustered by disease cluster (DC). DCs are arranged in rows
(DC1, DC2, DC3..).
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Fig. S7. Comparison of disease networks.
A) We compared the HFnet with two other disease networks. Morbinet

represents an epidemiological comorbidity network from a larger and non HF
centered cohort. HPOnet is a disease network based on ontological similarity of
phenotypes. Both networks were initially larger than the HFnet, thus we subset
each network to the same nodes. We compared number of edges (top panel) and
number of edges (bottom panel). B) Jaccard comparison of nodes. C) Jaccard
comparison of edges. D) DeltaCon similarity (y-axis) compared to rewiring
probabilities of the HFnet (x-axis). We used subsets of the HFnet with Morbinet
(red) and with HPOnet (blue) and rewired each subset five time with a given
probability (x-axis) and computed DeltaCon similarity with the original HFnet.
Dashed lines indicate HFnet and Morbinet and HFnet and HPOnet similarities.
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Fig. S8. Comparison of centralities.
A) Comparison of local (node-wise) graph theory based metrics. Size,
loglO(prevalence) per disease; degree, number of edges per disease; strength,
sum of edge weights per disease, cc, cluster coefficient, number of connected vs
unconnected first order neighbors per disease; btw, betweenness centrality
(fraction of shortest paths with the node vs without the node); closeness,
closeness centrality (inverse of the sum of distances to all the other vertices in
the graph). Upper half displays Pearson’s correlation between metrics.
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B) Important comorbidities of HF compared via centrality rankings in the
HFnet. C) Graph metrics compared by disease category in the HFnet.

Kruskal Wilis test p< 0.01 for all metrics except betweenness centrality (btw).
Size, loglO(prevalence); degree, number of edges; cc, cluster coefficient, number
of connected vs unconnected first order neighbors; btw, betweenness centrality
(fraction of shortest paths with the node vs. without the node); closeness,
closeness centrality (inverse of the sum of distances to all the other vertices in
the graph).
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Fig. S9. Comparison of clustering algorithms in the HFnet.
A) Comparison of number of clusters by algorithms. B) Number of nodes per

cluster. C) Network modularity achieved by algorithm. D&E ) Comparison of
similarity of node assignment between clustering algorithms with normalized
mutual information (D) and adjusted rand index (E). F) Comparison of
modularity , cluster number and mean normalized mutual information (with
other algorithms) by resolution parameter in leiden algorithm. G) Comparisons
of single disease parameters from logistic regression models for HFpEF/HFrEF
contrast that were controlled for sex. Disease parameter estimates are on y-axis
and significance of the parameter is color coded. H) Composition of the
comorbidity profiles (rows) in disease clusters (DCs).
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Fig. S10. Leave-one-out cross validation of disease gene prediction.
A) Genes expressed in the heart based on three data sources providing different

levels of evidence. GTEX is used to describe gene expression in the human
healthy heart, proteome study for expression on protein level in human heart
and gene expression in diseased heart. We subset the gene networks to the
union. B) Jaccard distance calculated between all DisGeNET gene sets linked to
the HFnet. The blue clusters indicate similar gene sets, which were excluded
during the leave one out cross validation assessment to avoid overfitting to
DisGeNET. C) Correlation of link prediction with disease frequency (upper
panel) and number of predicted genes (middle panel) and DisGeNET
confidence scores (lower panel). D) Prediction metrics compared by disease
categories
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Fig. S11. HF subtype gene prediction.
A+B) Random walk (RW) with restart in multiplex heterogeneous network was

applied with comorbidity profiles for HFpEF and HFrEF as seed nodes. RW
probability distribution of all genes in the HFhetnet is shown for A) HFpEF and
B), HFrEF comorbidity profile. C) Gene prioritization for HFpEF. Top 500
HFpEF genes are ranked (x-axis) and compared to their ranking in the HFrEF
vector (y-axis). Color is the RW probability for HFpEF multiplied by the ranking
difference. This calculation yields a new gene ranking that prioritizes HFpEF
specific genes. D) Comparison of gene rankings within the top 500 genes of
HFpEF (x-axis) and HFrEF (y-axis). Genes that are known to be associated with
heart failure are colored and labeled. E) Comparison of intersections of HF
gene sets demonstrating a low redundancy. F) HF geneset recovery (assessed
with area under the receiver operator (AUROC) and area under the
precision-recall curve (PR_AUC)) with 1000 random comorbidity profiles from
the HFnet were used to generate null distributions. The geneset recovery values
from the real HFpEF and HFrEF comorbidity profiles were then z-transformed.
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Fig. S12. L-NAME/HFD Phenotype data.

A) Body weight (g). B) Blood glucose levels (mg/dL). C) Blood Pressure (mmHg).
D) Echocardiography based E/e’. E) Posterior wall thickness (mm), F) Fractional
shortening (%). Unpaired, two sided student's t-test for all comparisons; * p<0.05,
** p<0.01, *** p<0.001.
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Fig. S13. Myocardial gene expression in L-NAME/HFD.
A) Principal component analysis embedding transcriptomes of murine control

(CON) and HFpEF samples (HFD.LNAME). B) Q-Q plot displaying deviation of
gene-level p-values from a null model. C) Volcanoplot displaying up and down
regulated genes. D) Overrepresentation analysis of GO terms, upper panel GO
biological process, lower panel GO molecular function. Enrichment was
performed by selecting up and down regulated genes and enriching them
separately by calculating Odds Ratio and hypergeometric tests within ontology
gene sets. For visualization purposes we multiplied the Odds Ratio by sign of
regulation. E) Visualization of the running sum calculated in gene set
enrichment analysis for the comorbidity predicted gene sets. Left panel are top
100 HFpEF predicted genes, right panel are top 100 HFrEF predicted genes.
Gene ranks were ordered by t-statistic values.
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