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Text S1. Assessment of kidney outcomes 

Cystatin C was measured using the ARCHITECT MULTIGENT Cystatin C assay (Abbott, 

Wiesbaden, Germany) using immunoturbidimetry at S4 (baseline) and N Latex Cystatin C assay 

(Siemens Healthcare Diagnostics Products GmbH) using particle-enhanced 

immunonephelometry at F4/FF4 (first and second follow-up). Cystatin C at F4 was measured 

during July-October 2008, so the values were calibrated to the International Federation of 

Clinical Chemistry and Laboratory Medicine (IFCC) standard by multiplying by a factor of 

1.174 as suggested by Siemens. S4 and FF4 values were measured in 2015 and 2017, 

respectively, and corresponded to the IFCC standard. Cystatin C-based estimated glomerular 

filtration rate (eGFRcys) was calculated using the Chronic Kidney Disease Epidemiology 

Collaboration equation 2012 [23]. 

 

In comparison to creatinine-based estimated glomerular filtration rate (eGFRcr), there were 278, 

5, and 17 missing values on eGFRcys at S4, F4, and FF4, respectively. Regression imputation 

was used to impute the missing values of eGFRcys. A linear mixed-effects model with random 

intercepts for each participant was constructed as eGFRcys (dependent variable) against eGFRcr 

(independent variable), and included age at the time of eGFR measurement, sex, and follow-up 

wave as covariates, using R package “lme4”. The predicted values were used to replace the 

missing values on eGFRcys. 

 

Additionally, at KORA F4, urinary albumin and urinary creatinine were determined from frozen 

urine (sampled by a random spot urine specimen) with a modified kinetic rate Jaffe method 

(CREATININ-JK, Greiner, Bahlingen, Germany) on a Cobas Mira analyzer (Roche Diagnostics, 

Mannheim, Germany) and by nephelometry on a BN II analyzer (Siemens, Erlangen, Germany). 

Urinary albumin to creatinine ratio was calculated as urinary albumin/urinary creatinine (mg/g). 
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Text S2. Inverse probability weighting 

To partially address bias caused by loss to follow-up (due to death or other reasons, e.g., refusal 

or inability to contact, Figure 1B), the inverse probability weighting method [27] was used to 

examine the impact of loss to follow-up in the present study. Each participant’s probability of 

loss to follow-up (P1) was estimated by logistic regression model with loss to follow-up (yes/no) 

as outcomes, including baseline age, sex, body mass index, physical activity, smoking status, 

alcohol consumption, systolic blood pressure, use of antihypertensive medication, triglycerides 

(naturally log-transformed), high-density lipoprotein cholesterol, use of lipid-lowering 

medication, prevalent diabetes, prevalent cardiovascular diseases, fasting status, and creatinine-

based estimated glomerular filtration rate (eGFRcr) as predictors. Inverse probability weighting-

weight was calculated as 1/(1-P1). Then the weight was applied in sensitivity analyses of 

associations between the 66 significant biomarkers and the annual rate of change in eGFRcr in 

linear regression models. 
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Text S3. Mendelian randomization analysis 

Capitalizing on the fact that genotypes are assigned randomly when passed from parents to 

offspring, Mendelian randomization (MR) represents an effective approach to reducing the risk 

of reverse causation by employing single nucleotide polymorphisms (SNPs) as instrumental 

variables (IV) to assess unconfounded exposure-outcome associations. To maximize statistical 

power, we applied a two-sample MR design using the largest genome-wide association studies 

(GWAS) results to date for selecting instruments for our significant biomarkers and kidney 

function decline. Additional file 2: Figure S3 shows the process of MR analysis. Publicly 

available protein quantitative trait loci (pQTL) data for 1463 Olink Explore 1536-based proteins 

(also based on the Olink’s proximity extension assay technology) in 35571 European-ancestry 

population from UK Biobank Pharma Proteomics Project [31] was used to identify SNPs 

associated with eGFR decline-associated proteins. We found pQTLs for all 21 top proteins. 

Selection of pQTL was based on cis-SNPs with a multiple-testing-corrected significance at the 

level p < 3.4E-11 (associations with a genome-wide significance, i.e., p < 5.0E-8, are 

unavailable). In the next step, linkage disequilibrium clumping with r2 < 0.001 within 10000kb 

region was conducted to identify independent SNPs. Since only 1 SNP was available for each 

protein, none of the SNPs was excluded in this step. SNPs-eGFR decline associations were 

extracted from a Meta-analysis, including 62 European-ancestry GWAS in 343339 individuals, 

which aimed to identify genetic loci for eGFR decline, which was defined as “(eGFR at follow-

up – eGFR at baseline)/ number of years of follow-up” [32]. Eighteen out of 21 proteins had 

SNPs-eGFR decline data available. Furthermore, we conducted data harmonization to make sure 

that the effects of SNPs on proteins and eGFR decline were corresponding to the same allele. In 

order to test the assumption of MR that IVs should not be associated with confounders, 

associations between selected SNPs and other traits were searched for in the PhenoScanner V2 

[33]. One SNP (rs198389) was excluded given its associations with blood pressure (Additional 

file 1: Table S2), leaving 17 proteins for MR analysis (Additional file 1: Table S3). Wald ratio 
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was calculated since only one SNP instrument was available for each protein. All the MR 

analyses were performed using R package “TwoSampleMR v.0.5.6” [34]. 

 

There may be participant overlap between the two GWAS studies, since the GWAS of proteins 

was conducted among 35571 participants from UK Biobank and the GWAS of eGFR decline was 

conducted among 343339 European-ancestry individuals, including 15442 participants from UK 

Biobank. Thus, there may be bias due to the participant overlap [35]. A maximum likelihood 

method was used to address this problem, using R package “MendelianRandomization v.0.6.0”. 

The function “MendelianRandomization::mr_maxlik” allows setting a correlation parameter psi, 

which indicates the correlation between the association with the exposure and the association 

with the outcome for each variant resulting from sample overlap [36], to adjust for bias due to 

the participant overlap in two-sample MR analysis. The parameter psi is set to zero when there is 

no participant overlap, and arises if the samples for the associations with the exposure and the 

outcome overlap. Because we were unable to estimate the exact correction parameter psi among 

overlapping samples, several values for psi (0.1, 0.3, and 0.5) were set to evaluate the bias due to 

participant overlap.  

 

The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology)-MR 

checklist of recommended items to address in reports of MR studies [37] is presented in 

Additional file 1: Table S18. 
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Figure S1. Example of the annual rate of change in eGFR for each participant 

Abbreviations: eGFR, estimated glomerular filtration. 
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Figure S2. Flowchart of statistical analyses 

Abbreviations: CKD, chronic kidney disease based on eGFRcr; eGFRcr, creatinine-based 

estimated glomerular filtration rate; eGFRcys, cystatin C-based estimated glomerular filtration 

rate; FDR, Benjamini–Hochberg false-discovery rate. 
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Figure S3. Genetic instrument selection and data harmonization for Mendelian 

randomization analysis 

Abbreviations: eGFR, glomerular filtration rate; LD, linkage disequilibrium; MR, Mendelian 

randomization; SNP, single nucleotide polymorphism. 
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Figure S4. Distribution and correlation between the annual rate of change in eGFRcr and 

eGFRcys. A) Distribution of the annual rate of change in eGFRcr. B) Distribution of the annual 

rate of change in eGFRcys. C) Correlation between the annual rate of change in eGFRcr and 

eGFRcys. D) Correlation between the annual rate of change in eGFRcr and eGFRcr 2021. 

Abbreviations: eGFRcr, creatinine-based estimated glomerular filtration rate; eGFRcr 2021, 

eGFRcr calculated by the Chronic Kidney Disease Epidemiology Collaboration equation 2021; 

eGFRcys, cystatin C-based estimated glomerular filtration rate; No.Measurement, the number of 

measurements on eGFR at baseline and follow-up.  
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Figure S5. Overlap of proteomic biomarkers between biomarkers associated with the 

annual rate of change in eGFRcr in several sensitivity analyses. Several sensitivity analyses 

were performed based on model 2 in Additional file 1: Table S6, and only the 66 biomarkers 

significantly associated with the annual rate of change in eGFRcr were included. Detailed 

information is presented in Additional file 1: Table S8. Model 2a: repeated analyses of model 2 

after excluding participants who were non-fasting before at the time of blood sampling (n = 113); 

Model 2b: repeated analyses of model 2 after excluding participants who had chronic kidney 

disease at baseline (n = 54); Model 2c: repeated analyses of model 2 after excluding participants 

who had an increase in eGFRcr during follow-up (n = 151). 

Abbreviations: eGFRcr, creatinine-based estimated glomerular filtration rate. 
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Figure S6. Longitudinal associations between 66 proteomic biomarkers and the annual rate 

of change in eGFRcys. The 66 biomarkers significantly associated with the annual rate of 

change in eGFRcr were taken to investigate their associations with the annual rate of change in 

eGFRcys. Detailed results of beta coefficients and FDR for the associations are presented in 

Additional file 1: Table S9.  

Abbreviations: eGFRcr, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatin 

C-based estimated glomerular filtration rate; FDR, Benjamini–Hochberg false-discovery rate. 

Full names of the biomarkers can be found in Additional file 1: Table S1. 
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Figure S7. Association of 66 proteomic biomarkers with eGFRcr-based CKD incidence. 

Only 66 biomarkers significantly associated with the annual rate of change in eGFRcr were used 

to investigate their associations with incident CKD. The biomarkers are sorted by the magnitude 

of HRs. 

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; eGFRcr, creatinine-based 

estimated glomerular filtration rate; HR, hazard ratio; FDR, Benjamini–Hochberg false-

discovery rate. Full names of the biomarkers can be found in Additional file 1: Table S1.  



14 

 

Figure S8. Pairwise correlation matrix between the 21 identified proteomic biomarkers. 

Correlation between the 21 biomarkers associated with the annual rate of change in eGFRcr, 

annual rate of change in eGFRcys, and incident CKD (Figure 3).  

Abbreviations: CKD, chronic kidney disease; eGFRcr, creatinine-based estimated glomerular 

filtration rate; eGFRcys, cystatin C-based estimated glomerular filtration rate. Full names of the 

biomarkers can be found in Additional file 1: Table S1. 
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Figure S9. Pathway enrichment analysis of the 21 identified biomarkers showing top 

biological processes related to kidney function. The 21 biomarkers significantly associated 

with the annual rate of change in eGFRcr, annual rate of change in eGFRcys, and incident CKD 

(Figure 3), were included in the pathway enrichment analysis. The y-axis signifies the top 15 

biological processes in kidney function. The x-axis is the -log10 of the FDR. 

Abbreviations: CKD, chronic kidney disease; eGFRcr, creatinine-based estimated glomerular 

filtration rate; eGFRcys, cystatin C-based estimated glomerular filtration rate; FDR, Benjamini–

Hochberg false-discovery rate.  

 

 

 

 


