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1. Research Questions 
– Does ever use of hormonal contraceptives influence the risk of new-onset asthma in 

women? 
– Does ever use of menopausal hormone therapy (MHT) influence the risk of new-

onset asthma in menopausal women? 

2. Directed Acyclic Graphs 
In our study, the goal was to estimate the causal effect of use of hormonal 
contraceptives or MHT on the risk of developing new-onset asthma in women, using 
observational data from the West Sweden Asthma Study (WSAS) cohort.1,2 In order to 
make valid causal inference from observational analysis, it is crucial that potential 
systematic biases, including confounding bias, selection bias and measurement bias, are 
identified and accounted for in the analysis.3 Confounding bias is defined as the bias 
caused by common causes of the exposure and the outcome.4 Selection bias refers to 
the bias resulting from conditioning on the common effect of two variables, one of 
which is either the exposure or associated with the exposure, and the other is either the 
outcome or associated with the outcome.5,6 Confounding bias and selection bias can 
lead to lack of exchangeability (or comparability) between the exposed and the 
unexposed.3 A number of investigators have emphasized that causal directed acyclic 
graphs (DAGs) can be used as a visual aid to help represent and classify systematic 
biases and further guide data analyses.3,7–11 DAGs intuitively encode the investigators’ 
qualitative subject-matter knowledge and a priori assumptions about the causal 
structure of interest, and are increasingly used in modern epidemiology.3,8,9,12 Briefly, a 
causal DAG consists of nodes (variables) and directed edges (arrows). The presence of an 
arrow between two variables indicates that there is a causal effect of one variable on 
the other for at least one individual in the population. The absence of an arrow indicates 
that there is no causal effect of one variable on the other for any individual in the 
population. When a DAG is drawn, the backdoor criterion can be applied to determine a 
sufficient set of adjustment variables required to achieve (approximate) conditional 
exchangeability between the exposed and the unexposed.3,4 

 
Therefore, for each research question in our study, we built causal DAGs to represent 
our a priori subject-matter knowledge and assumptions about the underlying causal 
structure. Table S1 presents detailed justifications for the common causes of the 
exposures of interest and new-onset asthma among women (i.e., confounding bias). In 
our study, there were potential sources of selection bias, such as non-response, loss of 
follow-up, and missing data (Figure 1).5 Furthermore, the fact that the study population 
was restricted to women who had never had asthma at baseline (the year 2008) would 
likely introduce selection bias (if the hormonal exposures had a causal effect on new-
onset asthma in women). This is because for some (or most) women, the hormonal 
exposures occurred before the study was initiated in the year 2008. For example, 
women aged 30 years at baseline might have started using hormonal contraceptives at 
18 years old. Similarly, women aged 60 years at baseline might have started MHT at 50 
years old. That is, if the hormonal exposures increased the risk of new-onset asthma, the 
more susceptible individuals would have developed asthma before baseline in the 
exposed group than in the unexposed group. As a result, restricting to individuals who 
had not had asthma at baseline would likely result in differential proportion of 
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susceptible individuals after baseline, thereby introducing selection bias.5,13 To well 
illustrate different potential sources of bias in our study, we presented confounding bias 
(Figure S1 and Figure S2), selection bias (Figure S3) and measurement bias (Figure S4) in 
separate DAGs. The DAGs were drawn using DAGitty (http://dagitty.net).14 

 
Notably, there is no guarantee that the proposed causal DAGs are exactly correct.4,9 In 
other words, our attempts to identify a sufficient set of adjustment variables to achieve 
(approximate) conditional exchangeability would not necessarily be successful. 
However, the structural approach to systematic biases makes our assumptions about 
the causal network explicit and helps ensure consistency between our beliefs and 
analytic models.3,4 Importantly, it enhances communication among investigators. 

3. Individual Matching (R-to-1 Matching) 
– The variables used for matching cases with controls were exact age in years at 

baseline in 2008, place of residence (in Gothenburg or outside Gothenburg), and 
smoking status (never smoker, past smoker, or current smoker). 

– We used category matching to match cases with controls15: firstly, we categorized 
each of the three matching variables separately; secondly, for each case, we 
determined her/their age-residence-smoking combination and found all the controls 
with the same age-residence-smoking combination (each combination is a matched 
set or stratum); finally, we drew a random sample (𝑛 = 10) from the control 
population in each stratum; in strata where the number of controls in the population 
was equal to or less than 10, all the controls were selected. 

– The potential advantage of matching in case-control studies is that it can lead to a 
balanced number of cases and controls across the levels of the matching variables, 
which may reduce the variance in estimating the parameters of interest and 
therefore improve statistical efficiency.15,16 

4. Statistical Analyses 
4.1. Multiple imputation 

In our study population, some individuals have missing values for the exposure 
and/or adjustment variables. First, we will conduct complete-case analysis, that is, 
restricting the analysis to individuals with complete data on all variables included in 
the analytic model (see page 5 for more details). However, complete-case analysis 
will cause loss of information and may lead to biased estimates.17 Second, we will 
apply multiple imputation (MI) to impute the missing values in the incomplete 
variables, which can account for the statistical uncertainty in the imputed 
values.18,19 In brief, MI uses the distribution of the observed data to impute multiple 
versions of plausible values for the missing data, fits an identical analytic model to 
each imputed dataset, and finally combines the analytic results to obtain overall 
estimates (e.g., using Rubin’s rules).19–21 

 
We will use full-conditional specification (FCS) MI, also known as MI by chained 
equations (MICE).22–24 FCS MI multiply imputes missing data from conditional 
distribution of each incomplete variable given other variables (including the 
matching variables in a matched case-control design).22 In other words, the 
matching is broken to impute missing values of incomplete variables, and later 

http://dagitty.net/
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restored for data analysis (called “MI using matching variables”).22 FCS MI can 
impute missing values for both continuous and categorical variables; and in a 
matched case-control design, it can allow for situations where there are multiple 
matched controls per case or the number of matched controls varies between 
cases.22,23 

 
The imputation process in our study consists of the following seven main steps23: 
– Missing data assumption19: We assume that data are missing at random (MAR), 

that is, “the probability of data being missing does not depend on the 
unobserved data, conditional on the observed data”. 

– Specify imputation model19: We will use predictive mean matching (PMM) to 
impute continuous variables, logistic regression for binary variables, and 
multinomial logistic regression for categorical variables with ≥ 3 levels; the main 
virtues of PMM are that it requires neither linearity assumption between 
dependent and independent variables, nor normality assumption in dependent 
variables, and the imputed values are restricted to the observed ones. 

– Select predictors for imputation model19,24: We will select all variables that are 
included in the final analytic model as predictors in the imputation model; 
particularly, the outcome variable must be included25; in addition, for incomplete 
variables in the analysis model, we will identify auxiliary variables (i.e., variables 
that either correlate with the incomplete variable or predict the missingness of 
the incomplete variable, but are not included in the analytic model23,26) and 
include them into the imputation model, so as to make the MAR assumption 
more plausible and thus reduce bias. 

– Impute transformed variables24: For transformed variables (e.g., body mass 
index) derived from original (incomplete) variables (e.g., height and weight), if 
the original variables need to be included in the imputation model (as predictors 
for the transformed variables and/or other incomplete ones), we will use passive 
imputation to ensure that the imputed values of the original and transformed 
variables are consistent; otherwise, we will first impute the original variables and 
then transform the completed. 

– Number of iterations23: Simulation studies suggest that for datasets with 
moderate amounts of missing data, five or 10 iterations would give satisfactory 
performance; therefore, we will use 10 iterations for imputations. 

– Number of imputations19: The rule of thumb is that the number of imputations 
should be more than or equal to the percentage of incomplete cases in the 
variable being imputed, though this may not be universally appropriate; we will 
impute 100 datasets, each of which will comprise the observed data and the 
imputed values for the missing data. 

– Validate imputations23: We will check the convergence of the imputations, 
visualize the distributions of imputed data, and compare the distributions of 
observed data with those of imputed data. 

 

4.2. Frequentist conditional logistic regression 
– As the matching criteria are relatively fine (cases and controls were exactly 

matched on three variables), when adjusting for the matching variables, there 
would be a number of dummy variables in the model; in this case where the 
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number of parameters is large relative to the number of participants, we will use 
conditional logistic regression.15,27–29 

– In a matched case-control design, although matching ensures that cases and 
controls have similar distributions across the matching variables, matching in 
itself does not eliminate confounding by the matching variables, but in fact can 
introduce selection bias27,30; in order to remove this bias as well as to control for 
confounding by the matching variables, the matching variables need to be 
adjusted for in the analysis16,27; therefore, we will adjust for the matching 
variables in the analysis. 

– We will identify the matching strata that have identical values for the matching 
variables (i.e., exchangeable matched sets), and combine these strata into a 
single stratum before analysis; the advantage of this approach is that fewer data 
may be discarded during analysis (e.g., because strata where the case and the 
control have the same exposure status will be discarded in conditional logistic 
regression) and statistical precision may be improved.15,27,31 

– In order to achieve (approximate) conditional exchangeability between the 
exposed and the unexposed, we will adjust for the sufficient set of confounding 
variables identified using causal DAGs; for each research question, Figure S1 and 
Figure S2 present the full list of variables that will need to be adjusted for in the 
regression model; for continuous confounding variables, we will include them as 
linear terms (instead of as categories) in the regression model.32,33 

– We will apply the Frequentist conditional logistic regression model both in the 
original incomplete dataset and in the multiply imputed datasets. 

– It is worth noting that logistic regression can estimate only the conditional causal 
odds ratio, which is different from the marginal causal odds ratio in the 
population.16,34 

 

4.3. Bayesian conditional logistic regression 
The Bayesian statistical framework applies formal probability models to describe 
our uncertainty about the unknown parameters of interest.35 It can naturally 
accommodate our prior beliefs (or uncertainty) about the parameters before 
observing the data, and update these beliefs about the parameters after observing 
the data (i.e., our posterior beliefs).35 The relationship between our prior and 
posterior beliefs about the parameters can be presented by Bayes’ theorem36: 
 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) × 𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑃(𝑑𝑎𝑡𝑎)
 

 
Or more generally, 
 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 
 

where ∝ means “is proportional to”. That is, the Bayesian framework computes the 
posterior probability distributions over all possible values of the parameters, 
conditional on the prior probability distributions, statistical model and observed 
data.37 In contrast, the Frequentist statistical framework is concerned with the 
probability of the observed data given the unknown parameters.37 Thus, the 
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Bayesian framework allows us to easily make intuitive probabilistic statements 
about the parameters of interest. For example, we can apply a Bayesian logistic 
regression model to answer questions like “What is the probability that odds ratio is 
larger than 1?”. In recent years, the Bayesian statistical methods have become 
more popular in epidemiologic research.38 
 
The Bayesian modelling in our study consists of the following five main steps37: 
– Specify data model: Given the study design, we will use conditional logistic 

regression model (see page 5 for justification). 
– Specify prior probability distribution: The prior probability distribution 

represents our prior beliefs about the parameters of interest before seeing the 
data, which specifies the possible values of the parameters and the relative 
plausibility of each value; we will use normal distributions for the prior 
distributions; for each hormonal exposure, we plan to estimate a predictive 
distribution from previous meta-analyses as the prior distribution39; however, it 
is recommended that at least 10 studies are needed for reasonable estimation 
of predictive distribution40,41; if there are less than 10 studies, we will refer to 
our previous review work42–44 as well as newly published studies, while taking 
into account potential systematic biases in existing studies,36,39 to inform the 
priors, known as informative prior distributions; then we will conduct prior 
sensitivity analysis45 to examine the robustness of results under different prior 
specifications, and the results will be compared through a series of visual and 
statistical comparisons (see Additional file 4 for more details); the point is to use 
different possible priors to represent our uncertainty around the prior; for 
adjustment variables, we will use the default priors (weakly informative priors) 
in R package ‘rstanarm’ (version 2.21.1)46; weakly informative priors can provide 
moderate regularization and help stabilize computation, while still allowing for 
extreme values when warranted by the data.37,46,47 

– Approximate posterior probability distribution: The posterior probability 
distribution describes the relative plausibility of all possible parameter values 
conditional on the priors, model, and data; we will use a Markov Chain Monte 
Carlo (MCMC) method – the Hamiltonian Monte Carlo (HMC) algorithm – to 
draw samples from the posterior distribution of the parameter, to therefore 
approximate the posterior distribution46; specifically, we will fit a Bayesian 
conditional logistic regression model in each multiply imputed dataset (not in 
the original incomplete dataset), simulate many MCMC draws from their 
respective posterior distributions (we will run four randomly initialized Markov 
chains, each for 2,000 iterations, including a warmup period of 1,000 iterations 
that will be discarded), and finally mix all the MCMC draws together to 
approximate the posterior distribution48; this approach has been suggested to 
work well with a large number of imputed datasets (e.g., 100)48; we will also 
compare the approximated posterior distributions from each multiply imputed 
dataset. 

– Markov chain diagnostics: To check the MCMC sampling quality, we will 

examine the trace plot, calculate two supplementary diagnostic metrics (𝑅̂ 
statistic and effective sample size [ESS]), and compare posterior distributions 

approximated from each MCMC chain37; in general, it is recommended that 𝑅̂ < 
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1.1 and ESS ≥ 1,000 for all parameters in the model are required to ensure 
healthy convergence and enough precision37,49; for simplicity, we will check only 
for the first imputed dataset. 

– Summarize and interpret results: We will use the combined MCMC draws to 
approximate the posterior probability distribution48; we will calculate the 
median as the point estimate, and the equal-tailed interval as the posterior 
interval (PI) (also known as credible interval)50; for example, a 95% PI includes 
the 95% central portion of the posterior distribution (excluding 2.5% from each 
tail of the distribution); thus, a 95% PI means that “Given the priors, statistical 
model, and observed data, we are 95% certain that the parameter lies within 
this interval”; we will also estimate the probability that the regression 
coefficient for the hormonal exposure (on log odds ratio scale) is greater or less 
than 0. 

5. Additional Analyses 
5.1. Sensitivity analysis for residual confounding 

To assess the robustness to (potential) residual confounding of the estimated causal 
effects of hormonal exposures on the risk of new-onset asthma in women using the 
WSAS observational data,2 we will calculate E-value,51 which indicates how strong 
residual confounding would have to be to “explain away” an observed causal effect. 
Specifically, E-value represents the minimum strength of association, on the risk 
ratio (RR) scale, that residual confounding would need to have with both the 
exposure and the outcome, conditional on the measured variables, to shift the 
effect estimate to a chosen threshold of scientific importance. In our study, the 
threshold of RR = 1.0 will be used. A large E-value would indicate that the effect 
estimate is relatively robust to residual confounding, whereas a small E-value would 
indicate that the effect estimate is relatively sensitive to residual confounding. 
Notes: As noted in VanderWeele et al 2017,51 E-value is a continuous measure, and 
use of any threshold cutoff is discouraged; a small E-value only implies that the 
evidence for an effect is weak, but does not mean that there is evidence for no 
effect. 

 

5.2. Exploratory subgroup analyses 
As explained on page 3 and also illustrated in Figure S3, because women with ever 
asthma at baseline were excluded in our study design, it would result in selection 
bias, only if hormonal exposures have a causal effect on the risk of developing new-
onset asthma in women. That is, selection bias would be anticipated, especially 
among women of older age groups at baseline, if there exists a causal effect of 
hormonal exposures on asthma. Specifically, we expect that with age at baseline 
becoming older, the effect estimate would gradually be biased towards the 
opposite direction of the true effect. To explore whether there exists this pattern, 
we will conduct subgroup analyses by age at baseline in 2008 under the Frequentist 
framework. The age cut-offs used for subgroup analyses will be based on the age 
distribution in our study sample.  
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6. Supplementary Tables and Figures 
 

Table S1. Potential common causes of use of hormonal contraceptives or  

menopausal hormone therapy and new-onset asthma in women 

Potential causes for new-onset asthmaa  Use of HCsb Use of MHTc 

Demographic factors 

Age52–57   
Socioeconomic status54,55,57–61   
Body mass index54,55,62–65   
Lifestyle factors 

Diet (e.g., fruit/vegetables, fast food)66   
Physical activity67–69   
Tobacco smoking55,65,70   
Alcohol55,70   
Environmental factors 

Environmental tobacco smoke55,65   
Hormonal factors 

Menarche (age at menarche)   

Gravidity   

Menopause (age at menopause)54,59,60   
Other factors 

Gynecological conditionsd,52,54,56,58,59   
Abbreviations: HCs, hormonal contraceptives; MHT, menopausal hormone therapy. 
a The list of factors was based on literature reviews on potential risk factors for new-onset asthma in  
adults42,71–73; factors that were considered not to be causally related to either of the exposures of interest  
were excluded. 
b Among all women. 
c Among menopausal women. 
d Including endometriosis, polycystic ovarian syndrome, gynecological acne, and hysterectomy with or  
without oophorectomy. 
 

 The factor is likely to cause the exposure. 

 The exposure is likely to cause the factor. 
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 exposure 

 outcome 

 ancestor of outcome 

 ancestor of exposure and outcome 

 causal path 

 biasing path 

 
Figure S1. A causal directed acyclic graph for potential common causes of use of hormonal 
contraceptives and new-onset asthma in women. 
Abbreviations: BMI, body mass index; SES, socioeconomic status. 
The sufficient set of adjustment variables to eliminate confounding bias for use of hormonal contraceptives 
and new-onset asthma in women includes age, adulthood socioeconomic status, age at menarche, and 
gynecological conditions. 
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Figure S2. A causal directed acyclic graph for potential common causes of use of 
menopausal hormone therapy and new-onset asthma in menopausal women. 
Abbreviations: BMI, body mass index; SES, socioeconomic status. 
The sufficient set of adjustment variables to eliminate confounding bias for use of menopausal hormone 
therapy and new-onset asthma in menopausal women includes age, body mass index, socioeconomic status, 
age at menopause, physical activity, tobacco smoking, alcohol, diet, environmental tobacco smoke, and 
gynecological conditions. 
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A 

 
 
 
 

B 

 
 

 exposure 

 outcome 

 ancestor of outcome 

 adjusted variable 

 causal path 

 biasing path 

 
Figure S3. A causal directed acyclic graph for potential selection bias of hormonal 
exposures and new-onset asthma in women. 
Hormonal exposures include ever use of hormonal contraceptives or menopausal hormone therapy. For 
simplicity, we assumed that the potential common causes of the exposures and the outcome were fully 
measured and could be controlled for during analysis. A. If the exposures have a causal effect on new-onset 
asthma in women, conditioning on asthma status at baseline in 2008 (i.e., a collider) would introduce selection 
bias. B. If the exposures do not have a causal effect on new-onset asthma in women, conditioning on asthma 
status in 2008 would not introduce selection bias.  
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Figure S4. A causal directed acyclic graph for potential measurement bias of hormonal 
exposures and new-onset asthma in women. 
Hormonal exposures include ever use of hormonal contraceptives or menopausal hormone therapy. 
U_hormonal exposures: the measurement error for hormonal exposures; Hormonal exposures*: the measured 
hormonal exposures; U_new-onset asthma: the measurement error for new-onset asthma; New-onset 
asthma*: the measured new-onset asthma. In our study, information on the hormonal exposures and the 
outcome was obtained retrospectively by questionnaire survey; thus, an individual’s ability to recall their 
medical history (U) may affect the measurement of both hormonal exposures and outcome. In addition, the 
hormonal exposures were ascertained by recall after the outcome had occurred; thus, the outcome might 
affect the recall of the hormonal exposures (i.e., an arrow from New-onset asthma to U_hormonal exposures). 
In summary, we assumed that the potential measurement errors in our study were both dependent and 
differential.74 

 

 exposure 

 outcome 

 other variable 

 causal path 
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