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Supplementary methods 
 
Rationale of the Majewski criteria for FAS 
 
The Majewski diagnostic criteria for FAS [37] were widely used in German speaking countries at the 
time of diagnosis [38] of the parrticipantts with FAS in this study. In summary, they are based on the 
following clinical features [37]: 
 

• intrauterine and/or postnatal growth retardation  
• microcephalus  
• typical facial anomalies  
• statomotoric and mental retardation 
• hyperactivity 
• cleft palate  
• cardiac anomalies 
• musculoskeletal anomalies 
• genital anomalies 
• other developmental anomalies  
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MRI data preprocessing 
 
The following fMRIPrep “boilerplate” (indented text) describes the preprocessing steps in detail. The 
text has intentionally been left completely unchanged according to the fMRIPrep recommendations 
for optimal reproducibility. Please note that fMRIPrep generated multiple preprocessing outputs 
which could be used in different denoising and analysis strategies. Not all of these parallel outputs 
have been used for further processing in this study. Details about which outputs were used for actual 
denoising and further functional connectivity modelling are presented in the main text. 
 
 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.0.7 
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 
based on Nipype 1.4.2 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing  

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 
2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-
reference was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. 
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 
was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, 
Brady, and Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, 
RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was 
refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 
segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 2017). 
Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was 
performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-
extracted versions of both T1w reference and the T1w template. The following template was 
selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 
[Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing  

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. Susceptibility distortion correction (SDC) was 
omitted. The BOLD reference was then co-registered to the T1w reference using bbregister 
(FreeSurfer) which implements boundary-based registration (Greve and Fischl 2009). Co-
registration was configured with six degrees of freedom. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corresponding rotation and translation 
parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson 
et al. 2002). The BOLD time-series (including slice-timing correction when applied) were resampled 
onto their original, native space by applying the transforms to correct for head-motion. These 
resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 
preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a 
preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. Several confounding 
time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 
DVARS and three region-wise global signals. FD and DVARS are calculated for each functional run, 
both using their implementations in Nipype (following the definitions by Power et al. 2014). The 
three global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, 
a set of physiological regressors were extracted to allow for component-based noise correction 
(CompCor, Behzadi et al. 2007). Principal components are estimated after high-pass filtering the 
preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two 
CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are 
then calculated from the top 5% variable voxels within a mask covering the subcortical regions. This 
subcortical mask is obtained by heavily eroding the brain mask, which ensures it does not include 
cortical GM regions. For aCompCor, components are calculated within the intersection of the 
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aforementioned mask and the union of CSF and WM masks calculated in T1w space, after their 
projection to the native space of each functional run (using the inverse BOLD-to-T1w 
transformation). Components are also calculated separately within the WM and CSF masks. For 
each CompCor decomposition, the k components with the largest singular values are retained, such 
that the retained components’ time series are sufficient to explain 50 percent of variance across the 
nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head-motion estimates calculated in the correction step were also placed within 
the corresponding confounds file. The confound time series derived from head motion estimates and 
global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each 
(Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised 
DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform 
matrices, susceptibility distortion correction when available, and co-registrations to anatomical and 
output spaces). Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were 
performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014, RRID:SCR_001362), 
mostly within the functional processing workflow. For more details of the pipeline, see the section 
corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that 
users should copy and paste this text into their manuscripts unchanged. It is released under the CC0 
license. 
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Supplementary tables 
 
 
Supplementary Table 1 – Group comparison of head motion estimates  
 
Data derived from preprocessing (final sample after exclusion of participants with excessive 
head motion).  
 
 FASa CONa pb 

Mean FD (mm) 0.148 (0.07 – 0.27) 0.126 (0.08 – 0.29) 0.081 

Maximum FD (mm) 0.950 (0.22 – 3.25) 0.649 (0.18 – 1.83) 0.061 

Percentage of motion spikes 1.709 (0.00 – 10.26) 0.855 (0.00 – 16.67) 0.147 
a median (range) bMann-Whitney-U-test result. FAS: fetal alcohol syndrome, CON: controls, 
FD: framewise displacement 
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Supplementary figures 
 
 
Supplementary Figure 1 – Goodness-of-fit statistics for different k-means clustering 
solutions (2 to 10 clusters) for putative functional connectivity states in the time-resolved 
analysis. 
 
From left to right: percent of variance explained (relative to a 10-cluster solution), silhouette 
values (possible range: -1 to 1) with higher values representing good cluster separability, 
higher Calinski-Harabasz values representing higher cluster density and separability, and 
Davies–Bouldin criterion (lower values representing higher clustering quality). 
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Supplementary Figure 2 – Connectivity matrices representing the two putative functional 
connectivity (FC) states in the optimal clustering solution of the time-resolved analysis across 
the entire sample. 
 
Original model estimates from the DynamicBC toolbox calculated in the entire sample. 
Matrices ordered according to the ROI order key provided in the Supplementary data. Left: 
Cluster 1 shows widely distributed FC dominated by the default mode network (DMN); Right: 
Cluster 2 exhibits stronger dichotomization between the DMN and the other cognition-related 
networks. LH: left hemisphere, RH: right hemisphere 
 

 
 


