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Technical Supplement
	Clinically acquired, non-volumetric, inspiratory computed tomography (CT) scans were analyzed for this study, and the lung segmentation and densitometric assessments of the lung parenchyma were performed on the inspiratory scans using the Chest Imaging Platform (CIP) (http://acil.med.harvard.edu/chest-imaging-platform).[1]  
As discussed in the primary manuscript, the objective detection and quantification of the volume of interstitial lung features was performed using an approach similar to that designed for subtypes of emphysema.[2]  This method combines information regarding the properties of local tissue with the distance from the pleural surface.
In order to build a library of points to be used as tissue classifiers, which in turn would be used to train the objective quantification tool, a single expert placed 3357 fiducials, in 30 randomly selected subjects, on radiologic features unique to each disease type, including normal parenchyma, interstitial subtypes (reticular, centrilobular nodule, linear scar, nodular, subpleural line, ground glass), and emphysema subtypes (centrilobular and panlobular).  The subtype distribution of the training ROI can be found in e-Table 1.  Note that paraseptal emphysema was specifically not included because of prior experience which revealed its frequent misclassification as normal tissue, and that no panlobular emphysema was identified during the training process.  
Regions of interest (ROI) consisting of 30 by 30 in-plane voxels were constructed around each of these training points.  Feature vectors consisting of a measurement of the distance from the ROI to the nearest point on the pleural surface and the local density histogram obtained using kernel density estimation (KDE) were built for each ROI.  KDE is a non-parametric method used to estimate a probability distribution over the densitometry values in each region of interest by smoothing over the local histogram information (e-Figure 1). This is especially useful when a parametric distribution cannot be fit over the densitometry values. The estimated distribution () as a function of densitometry value () was obtained by smoothing a normalized histogram of all patch samples () using a Gaussian kernel ().  The smoothing factor  is particularly useful due to the finite number of densitometry samples per patch. Higher values of  result in increased smoothing of the distribution and the optimal value for this factor was obtained using methods described previously.[3, 4]



After the training process was completed, de-novo regions of the CT scan were classified based on their similarity to the training data. Subjects included in the training set were not excluded from this analysis.  For each test region, the local histogram and distance feature vectors were extracted and compared to the feature vectors of each region in the training data.  The following metric that combines the L1 norm between the local density histograms and a weighted difference between the distances to the chest wall was used for the comparison:



The weight () was determined by searching the parameter space, and in this data set, a weight of 0.013 provided the best results.  A k-nearest neighbor classification scheme was then used to select the label with the highest frequency from the 5 nearest training neighbors as determined by the distance metric.  
	The performance of the tool was validated using a leave-one-out validation on the 3357 regions of interest, whereby at each iteration one of the regions was selected as the testing data and the remaining patches were selected to be part of the training data.  The overall average accuracy was 47.7.% (e-Table 2).  Further review of the data shows that the accuracy of the algorithm was 96.8% for honeycombing and 89.6% for reticular changes, but only 21.4% for nodular changes and 29.4% for subpleural line (e-Table 2).   These differing levels of accuracy were in part due to the differing numbers of training points for each subtype in the training sets.  For example, while 1145 points were used to train for the honeycombing subtype, only 14 were used for the nodular subtype.  The ability of our classifier to obtain a high degree of accuracy for subytpes of particular interest such as honeycombing, especially in such a difficult dataset, demonstrates its ability to classify real clinical data.  
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Tables:
e-Table 1: Number of Training Samples per Radiographic Subtype
	 Feature
	Number of Training Points

	Airway
	6

	Bronchiectatic Airway
	112

	Centrilobular Emphysema
	31

	Ground Glass
	301

	Honeycombing
	1145

	Linear Scar
	8

	Nodular
	14

	Nodule
	1

	Non Bronchiectatic Airway
	8

	Normal Parenchyma
	853

	Reticular
	844

	Subpleural Line
	34

	Total
	3357




e-Table 2: Confusion Matrix for Predicted Radiographic Subtypes (columns) vs. Actual Radiographic Subtypes (rows)  
	 
	Predicted Class

	
	Airway
	Bronchiectatic Airway 
	Centrilobular Emphysema 
	Ground Glass 
	Honey combing 
	Linear Scar 
	Nodular
	Non Bronchiectatic Airway 
	Normal Parenchyma 
	Reticular
	Subpleural Line

	True Class
	Airway
	0.333
	0
	0
	0
	0.667
	0
	0
	0
	0
	0
	0

	
	Bronchiectatic Airway 
	0
	0.554
	0
	0.054
	0.321
	0
	0
	0
	0.054
	0.018
	0

	
	Centrilobular Emphysema 
	0
	0
	0.484
	0.129
	0
	0
	0
	0
	0.323
	0.065
	0

	
	Ground Glass
	0
	0.007
	0.017
	0.525
	0.083
	0
	0
	0
	0.126
	0.243
	0

	
	Honeycombing
	0.001
	0.005
	0
	0.007
	0.968
	0
	0
	0
	0
	0.018
	0.001

	
	Linear Scar
	0
	0.125
	0
	0
	0.125
	0.5
	0
	0
	0.125
	0.125
	0

	
	Nodular
	0
	0.286
	0
	0.143
	0.214
	0
	0.214
	0
	0
	0.143
	0

	
	Non Bronchiectatic Airway 
	0
	0
	0
	0
	0.25
	0
	0
	0
	0.625
	0.125
	0

	
	Normal Parenchyma 
	0
	0.001
	0.002
	0.018
	0
	0
	0.001
	0
	0.954
	0.023
	0

	
	Reticular
	0
	0
	0
	0.03
	0.052
	0
	0
	0
	0.018
	0.896
	0.005

	
	SubpleuralLine
	0
	0
	0
	0
	0.118
	0
	0
	0
	0
	0.588
	0.294

	 
	average = 0.477






e-Figures
e-Figure 1: Average Kernel Density Estimates vs. CT Density for each Radiographic Subtype 

