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Supplemental Methods

Macrophage isolation

BAL (Bronchoalveolar lavage) fluid was filtered with a sterile 70 µm cell strainer to remove mucus. After 

centrifugation, the BAL cells were resuspended in DMEM (Dulbecco's Modified Eagle's medium) containing 10% 

fetal bovine serum and antibiotics, and counted with a Neubauer chamber. A cytocentrifuge preparation of the cells

was then stained with modified Wright’s stain, and differential cell counts were performed to assess alveolar 

macrophage purity. To obtain a purified set of macrophages by using cellular adherence, the BAL leukocytes were 

incubated in 24-well tissue culture plates for two hours at 37oC in a humidified atmosphere of 5% CO2. 

Contaminating PMNs and lymphocytes (which are non-adherent cells) were removed by washing the wells with 

medium, and the adherent macrophages were lysed for gene expression. 

RNA sequencing

For each tissue, total RNA was extracted using the AllPrep kit (Qiagen, Valenica, CA). RNA quality was assessed 

on a BioAnalyzer (Agilent, Santa Clara, CA). Extracted RNA samples with RNA integrity number (RIN) greater 

than six and a concentration greater than or equal to 20 μg/ul were sequenced. Libraries were QCed by 

quantification with picogreen, size analysis on an Agilent Bioanalyzer (Agilent, Santa Clara, CA) and qPCR 

quantitation against a standard curve. Paired end reads with nominal 75 bp length were generated on an Illumina 

HiSeq 2500 flow cell. Sequencing was performed to an average depth of 20 million reads. 

The quality control pipeline included FastQC (1) and RNA-SeQC (2). Adapter trimming was performed using 

Skewer (3). STAR aligner version 2.4.0h (4) was used to map the reads to the GRCH38 genome reference. The 

Python framework HTSeq was used to produce gene-level counts (5) with the Ensembl version 81 gene annotation 

(6). The samples retained for analysis each had more than 7 million total reads, and greater than 70% of reads 

mapped to the reference genome, with less than 10% of R1 reads in the sense orientation. One subject was 

excluded due to lack of concordance between genotype calls in RNA sequencing and prior DNA genotyping data. 

Using the Y-chromosome expression data, concordance of sex was confirmed for each subject. Following this 

quality-assessment, samples from all three tissues were available for 21 subjects. Only data for genes mapped to 

autosomal chromosomes were retained, leaving counts for 54,243 of the 65,988 transcripts available for analysis. 

These gene expression data have been deposited in Gene Expression Omnibus (GEO accession GSE124180). 

Differential gene expression plots

We viewed the summary and intersection of these statistically significant findings using an UpSet plot (7). UpSet 

plots are akin to Venn diagrams that can effectively present intersections across a large number of gene sets (8), 



here illustrating complex overlap patterns across the differential gene expression (DGE) results. To extract and 

highlight more subtle and overall shared gene expression signatures across tissues and variables, we observed the 

correlation between the results for each tissue and phenotype variable. We sorted the results for each DESeq2 set 

by log2FoldChange and excluded genes not found in any of the results; NAs present when results for a gene not 

available in a particular set of results. The Spearman correlation was calculated for each pair of results (each result 

labeled: phenotype_tissue). We summarized the absolute value of these correlations using the R package pheatmap.

This DGE correlation plot includes a clustering by euclidean distance, presented as dendrograms on the axes. 

Gene set enrichment

We performed pathway analyses of the DGE results using gene set enrichment via the R package gage (9). The 

gage (Generally Applicable Gene-set Enrichment) strategy for gene expression analysis is to reveal pathway 

knowledge using sets of related genes, and is not limited by datasets with different sample sizes, experimental 

designs and profiling techniques. For these analyses, the DESeq2 results were sorted by the log2FoldChange value, 

providing a significance ranking with a sign for DGE direction. The KEGG and Reactome gene set databases were 

used to provide biological insight. Using these databases, pathway enrichment results with FDR q-value less than 

0.05 using the Benjamini and Hochberg method were considered significant. Enrichment of the sets within both up-

(greater) and down-regulated (less) genes was considered. We formatted pathway enrichment results for use with 

the Cytoscape plugin Enrichment Map (10). Enrichment Map presents the relationships between the individual 

pathway results in a network context (11). 

Gene sets from previous studies were used to provide disease context in the gene set enrichment analyses. The first 

two of these sets were comprised of differentially expressed genes by COPD status and by emphysema severity 

(Low attenuation areas at -950 HU and 15th percentile of the lung density histogram) in our previous lung tissue 

study (204 and 255 genes, respectively) (8). These sets were further parsed into up- and down-regulated genes by 

disease status and severity (COPD: 63 up & 141 down; emphysema: 103 up & 152 down). The third set is a co-

expression module from the same study (8). This module was associated with COPD in a lung-tissue co-expression 

analysis and was enriched for B cell pathways, sharing seventeen genes with a mouse smoking model (12) and 

twenty genes with previous emphysema studies (13, 14). The fourth consists of genes with CpG sites differentially 

methylated by COPD status in lung tissue (344 genes) (15). To capture greater biological significance, the mean 

difference in methylation was required to be greater than 5%, in addition to meeting an FDR < 5%. The fifth gene 

set was a list of 155 genes within loci identified in a recent large GWAS of COPD and lung function (16). The set 

of significant (FDR q-value < 0.1) genes from the analysis of airway phenotypes in the bronchial epithelium was 

included. This set was created by combining results from the three airway disease variables and was parsed by 

disease severity into up- and down-regulated genes, creating two additional gene sets. We used the Bonferroni 



method to correct for multiple testing. Significance was obtained with p < 0.05/(33 analyses x (7 ext. gene sets + 2 

ref. gene sets = 9) enrichment tests) = 0.00017. 

Connectivity Map

We used the ConnectivityMap within the CLUE platform to identify gene signatures shared between our bronchial 

epithelium results for the airway disease phenotypes and the database of human cell transcriptional responses to 

chemical perturbation (L1000 profiles) (17). Sets of significant up-regulated genes (positive log2FoldChange) were 

created for each of the three airway disease variables. The threshold for inclusion was FDR q-value < 0.05 instead 

of q-value < 0.1, as this produced a gene count below the 150-gene limit for a CMap query. The set of unique 

genes in the combination of the three sets was submitted to CMap, combined with a set of down-regulated 

(negative log2FoldChange) genes produced in the same manner. The perturbagens of interest have negative scores, 

as these signatures demonstrate reversal of disease severity. Data from the A549 (human non-small cell lung 

carcinoma) and HCC515 (human non-small cell lung adenocarcinoma) cell lines were the focus. Obtaining a score 

of 95 indicates that only 5% of reference gene sets demonstrated stronger connectivity to the perturbagen than the 

query, perhaps suggesting consideration for hypothesis generation. Results for both individual perturbagens and the 

CMap activity classes were observed, informing specific and general hypothesis options. 
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