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Sputum induction and processing 
 
Subjects underwent sputum induction by inhalation of nebulized saline in increasing concentrations 
from 0.9 to 3 % in repetitive inhalation/expectoration cycles (up to 4 per induction). Concomitant 
spirometry testing was performed to ensure subject safety during induction and saline concentration was 
not increased or induction of sputum was aborted if subjects experienced a decline in basal FEV1 of ≥ 
10 or ≥ 20 %, respectively [1, 2]. 
Expectorated sputum was collected in petri dishes and assessed by microscopic evaluation. Dense plugs 
of sputum cells were manually separated from saliva and contaminants and incubated with dithiothreitol 
(Sputolysin®, Calbiochem/Merck, Darmstadt, Germany). After addition of phosphate-buffered saline 
(PBS), sputum cell suspensions were filtered through nylon mesh (53 µm pore size) and pelleted by 
centrifugation. Following removal of supernatants, cell pellets were resuspended in PBS and aliquots 
for subsequent cell counting with a hemocytometer were taken, followed by preparation of cell slides. 
Before further preservation and storage, remaining sputum cells were pelleted by centrifugation. 
 
 
Sputum differential cell counts 
 
No substantial differences in the distribution of cellular proportions could be observed between the 
samples submitted to methylation and transcription profiling (see Supplementary Tables S1 and S2 as 
well as Supplementary Figure S1). 
 
Table S1: Differential cell count of sputum samples supplied to methylation microarray analysis 

 AM NG EO LY MO CC SC 
Asthma 

n = 9 
27.9 ± 21.9 
(6.3/60.4) 

54.7 ± 24.4 
(14.1/84.8) 

12.9 ± 24.5 
(1.5/77.0) 

0.7 ± 0.5 
(0.1/1.6) 

0.1 ± 0.1 
(0.0/0.3) 

1.6 ± 1.0 
(0.5/3.3) 

2.1 ± 3.4 
(0.3/10.8) 

COPD 
n = 10 

9.0 ± 5.9 
(1.1/21.1) 

88.9 ± 6.6 
(76.6/98.1) 

1.0 ± 1.2 
(0.0/4.0) 

0.2 ± 0.3 
(0.0/0.8) 

0.0 0.4 ± 0.4 
(0.0/1.4) 

0.6 ± 0.5 
(0.0/1.8) 

Controls 
n = 7 

47.8 ± 23.3 
(16.3/81.3) 

43.3 ± 24.4 
(6.5/76.1) 

0.3 ± 0.4 
(0.0/1.1) 

2.1 ± 2.6 
(0.0/7.6) 

0.3 ± 0.3 
(0.0/0.9) 

1.8 ± 0.7 
(0.9/2.6) 

4.4 ± 3.5 
(0.4/10.4) 

Cell proportions are reported as mean percentage ± SD (min/max). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. MO: monocytes. CC: 
ciliated cells (respiratory epithelium). SC: squamous cells. 
 
 
Table S2: Differential cell count of sputum samples supplied to gene expression microarray analysis. 

 AM NG EO LY MO CC SC 
Asthma 

n = 9 
27.9 ± 21.9 
(6.3/60.4) 

54.7 ± 24.4 
(14.1/84.8) 

12.9 ± 24.5 
(1.5/77.0) 

0.7 ± 0.5 
(0.1/1.6) 

0.1 ± 0.1 
(0.0/0.3) 

1.6 ± 1.0 
(0.5/3.3) 

2.1 ± 3.4 
(0.3/10.8) 

COPD 
n = 7 

9.9 ± 6.4 
(2.8/21.1) 

88.4 ± 6.7 
(76.6/96.1) 

0.6 ± 0.6 
(0.0/1.8) 

0.2 ± 0.3 
(0.0/0.8) 

0.0 0.4 ± 0.5 
(0.0/1.4) 

0.6 ± 0.6 
(0.0/1.8) 

Controls 
n = 9 

52.8 ± 26.3 
(16.3/81.3) 

40.1 ± 26.6 
(6.5/76.1) 

0.3 ± 0.4 
(0.0/1.1) 

2.1 ± 2.2 
(0.0/7.6) 

0.2 ± 0.3 
(0.0/0.9) 

1.6 ± 0.9 
(0.4/2.6) 

3.0 ± 3.2 
(0.4/10.4) 

Cell proportions are reported as mean percentage ± SD (min/max). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. MO: monocytes. CC: 
ciliated cells (respiratory epithelium). SC: squamous cells. 
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Figure S1: Mean cellular composition of sputum samples, shown separately for samples supplied to methylation 
profiling (A) and gene expression profiling (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. MO: monocytes. 
CC: ciliated cells (respiratory epithelium). SC: squamous cells. 
 
 
 
R/Bioconductor software packages 
 

Table S3: Software packages utilized for statistical analysis and data display. 
Name Version Reference 
R 3.6.1 [3] 
devtools 2.2.2 [4] 
Bioconductor 3.10.1 [5] 
limma 3.42.2 [6] 
minfi 1.32.0 [7] 
IlluminaHumanMethylation450kanno.ilmn12.hg19 0.6.0 [8] 
IlluminaHumanMethylation450kmanifest 0.4.0 [9] 
RColorBrewer 1.1-2 [10] 
matrixStats 0.56.0 [11] 
DMRcate 2.0.7 [12] 
DMRcatedata 2.2.1 [13] 
quadprog 1.5-8 [14] 
gtools 3.8.1 [15] 
BSDA 1.2.1 [16] 
plyr 1.8.6 [17] 
clusterProfiler 3.14.3 [18] 
org.Hs.eg.db 3.10.0 [19] 
msigdbr 7.0.1 [20] 
tidyr 1.0.2 [21] 
ggplot2 3.3.0 [22] 
cowplot 1.0.0 [23] 
VennDiagram 1.6.20 [24] 
EDec 0.9 [25] 
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DMR identification with DMRcate 
 
All workflow steps were calculated based on methylation beta values at standard kernel settings 
(bandwidth lambda = 1000, scaling factor C = 2, minimum no. of consecutive CpGs = 2). 
From the deconvolved data, we supplied the measures of significance of differential 
expression/methylation, together with the corresponding deconvolution estimates, to internal functions 
of the package. 
 
 
Enrichment analysis with clusterProfiler 
 
Gene symbols were mapped to Entrez IDs based on information of the org.Hs.eg.db annotation package. 
 
 
Correction for RNA degradation 
 
From the framework of available omics technologies, transcriptomics has by far been the one most 
frequently applied to sputum samples [26, 27]. However, the process of isolating high-quality nucleic 
acids from sputum is not trivial. Preparation of suitable samples from raw, freshly expectorated sputum 
is intensive and requires purifying procedures to remove saliva and break up mucin bonds by incubation 
with reducing chemicals. In light of the general instability of ribonucleic acid (RNA), being targeted by 
degrading enzymes (RNases) in the environment, challenges for handling and storage of sputum samples 
become obvious [28]. Methods that focus on high-throughput gene expression profiling (such as 
transcription microarray analysis or RNA sequencing) are optimized to work with very small amounts 
of input RNA and usually employ RNA amplification steps in their workflows. In the case of messenger 
RNA (mRNA) profiling, these are commonly based on poly-thymine (poly-T) primers that bind to poly-
adenin sequences (poly-A tails), allowing for selective human mRNA amplification [29]. This has 
potential to introduce substantial bias to downstream analyses in light of RNA degradation. In case of 
the widely spread microarray platforms, transcripts may not be detected if their corresponding array 
probes map to distant transcript regions that had already been cleaved from the poly-A-adjacent 
fragment. Previous studies on this issue have shown that the exclusion of array probes from downstream 
analyses, based on the position in the corresponding transcript to which they map, does not necessarily 
remove RNA quality effects from transcriptome data. Instead, RNA degradation in biological materials 
is considered to be a dynamic process that not solely depends on the length of RNA molecules (as, in 
contrast, it can be assumed for purified RNA samples) [30, 31]. Though sputum processing and storage 
protocols have been optimized to ensure retrieval of high-quality RNA, degradation remains a challenge 
to consider in any large-scale prospective biobank study in which sample collection and analysis may 
take place years apart. As long as the overall variation of RNA quality can be assumed to be constant 
across sample groups, the effects specified above may primarily impair the sensitivity of comparative 
transcriptome studies. When RNA quality is found to be distributed unequally across sample groups, 
however, degradation may in fact lead to false-positive findings. In the context of inter-array quantile 
normalization, a rank-based normalization algorithm frequently applied to gene expression microarrays 
[32, 33], transcripts can in fact be rendered to both higher and lower expression levels upon RNA 
degradation [31]. Some in silico correction methods [31] have been suggested to overcome these 
challenges but have not been evaluated in the context of sputum analysis yet. 
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We evaluated two correction procedures for RNA degradation: First, we calculated the correlation 
(Pearson’s product moment correlation coefficient r together with the associated two-sided p value of 
the correlation test) between expression and RIN (RNA Integrity Number) values across samples for 
each array probe. As expected in the context of rank-based normalization, gene expression was both 
positively (52.7 % of transcripts) and negatively (47.3 %) correlated with RIN in our data. In total, 43.2 
% of transcripts were correlated at p < 0.1 and 36.1 % at p < 0.05 (see Figure S2). Probes who showed 
a correlation of r ≥ 0.3 (to be seen as medium association, based on the definition of Cohen [34]) at p < 
0.1 were removed from the data set, followingly referred to as correlation filtering. 
 

Figure S2: Correlation between measured gene expression and RNA integrity (RIN, RNA Integrity Number). 
Distribution of r (Pearson correlation coefficient, A) and associated p values (B). 
 
 
Second, to correct for RNA degradation by linear least-squares regression, we applied a simple model 
of the form 
 

𝑦" = 𝛽% + 𝛽'𝑥" + 𝜀"   with   𝑖 = 1,… , 𝑛 (1) 
 
where n represents the number of samples supplied to the regression. For every sample i, xi denotes the 
single scalar predictor variable, yi the single scalar response variable and εi the stochastic component. β0 
and β1 denote the regression parameters (β0 can be referred to as intercept). In our case, we defined the 
RNA integrity (represented by the RNA integrity number, RIN) as predictor and the measured (log2) 
gene expression value as response variable. Consequently, β1 represents the estimated measure of 
association between RNA integrity and expression, β0 (intercept) the approximated integrity-
independent measure of expression with an estimate of variation across samples retained in ε. Reversely 
calculating {yi} based on the estimates β0, β1 and {εi} with {xi} set to the maximum RIN present in our 
study (9.1), we were able to retrieve expression values corrected for RIN-related effects (see also Figure 
S3). This was implemented with built-in functions of R (stats R core package). 
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Figure S3: Applying linear regression for RNA integrity (RIN) correction: distribution of p values associated with 
regression parameters. 
 
Before applying the correlation filtering or linear regression steps to the expression dataset, we took into 
account that the COPD group contained a higher proportion of HOPE-preserved samples with therefore 
more intensely degraded RNA than the asthma and control groups (see Table 3 in main manuscript). 
Therefore, correlation and regression characteristics were determined based on the asthma and control 
samples and then subsequently applied to the COPD samples in order to control for a possible skewing 
of correlation and regression parameters by COPD-specific expression patterns [31]. 
 
 
 
 
 
 

Figure S4: Distribution of gene expression values before correction for RNA integrity: density plot (A) and bean 
plot (B). 
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Figure S5: Distribution of gene expression values after correlation filtering: density plot (A) and bean plot (B). 
 
 
 

Figure S6: Distribution of gene expression values after correction for RNA integrity by linear regression: density 
plot (A) and bean plot (B). 
 
 
 

Figure S7: Distribution of beta values in the methylome data: density plot (A) and bean plot (B). 
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Estimation of cell type-specific gene expression and methylation (deconvolution) 
 
Based on the general assumption that both the methylation level of any CpG and the expression level of 
any transcript measured in a mixed-cell sample (such as sputum) result from the linear combination of 
the methylation/expression levels of all analyzed cells (as it were the “mean” of expression/methylation 
of all cells), and further assuming that methylation/gene expression across the cells of a particular cell 
type can be seen as homogeneous, inferring cell type-specific omics patterns from mixed-cell 
measurements can be reduced to a multiple (linear) regression problem in case the cellular proportions 
are known: 
 

𝑦 = 𝑋𝛽 + 𝜀 (2) 
 
Here, X = {xij} represents the matrix of predictor variables where column j relates to the proportionate 
quantity of cell type j = 1, … , c across samples i = 1, … , n. y = {yi} denotes the vector of response 
variables (measured methylation/expression), β = {βj} the vector of regression parameters (estimated 
cell type-specific methylation/gene expression) and ε = {εi} the vector of stochastic components 
(residuals). Fitting the above model by the standard least-squares method, however, disregards that 
methylation and expression values in the biological context represent bounded variables: there exists no 
methylation below 0 or over 100 % and, likewise, there exists no negative expression. Therefore, during 
the regression process, an optimal solution has to be found which assigns to all cell types 
expression/methylation levels that are biologically possible. As a solution, we performed regression by 
quadratic programming, allowing us to specify (biological) constraints (C in (3)) under which the 
regression parameters were estimated. This approach had previously been successfully applied to 
methylation and gene expression data [35, 36]. Programmatically, we implemented the dual method of 
Goldfarb and Idnani [37] (via the quadprog package) to solve the problem 
 

arg𝑚𝑖𝑛4 ∥ 𝑦 − 𝑋𝛽 ∥7   with   𝛽 ∈ 𝐶 (3) 
 
The assumption of linear combinability can be seen to hold true for methylation reported on the beta 
value scale (where values approximately correspond to proportionate methylation). Since the commonly 
applied log2-transformation of expression values does not allow for linear combination, expression 
values had to be analyzed on the linear (instead of log2-transformed) scale. 
Estimation was performed for each sample group (asthma, COPD and controls) separately. Methylation 
estimates were constrained to C = [0, 1] and expression estimates to the dynamic range of the array 
(defined as respective minimum and maximum background corrected feature intensities after quantile 
normalization). 
Following a standard approach in regression analysis as previously implemented by Onuchic et al. [35], 
we estimated the standard error sj of each of the regression estimates (methylation/gene expression level 
in each cell type j) in the same way as for a multiple linear regression problem by 
 

𝑠; = <[𝑀𝑆𝐸	(𝑋C𝑋)E'];,; 
(4) 

 
where MSE denotes the mean squared error, calculated by 
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𝑀𝑆𝐸 =
∑ 𝜀"7H
"I'
𝑛 − 𝑐  

(5) 

 
In (5), the mean squared error (MSE) is considered to be an unbiased estimator of the true (unknown) 
mean squared error by dividing by the degrees of freedom [38]. 
 
 
 
 
 
 
 
 

Figure S8: Distribution of the regression p values associated with fitting multiple linear models to the gene 
expression (A) and methylation data (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. CC: ciliated cells 
(respiratory epithelium). SC: squamous cells. 
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Figure S9: Distribution of the cell type-specific gene expression estimates after deconvolution: density plot (A) 
and bean plot (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. CC: ciliated cells 
(respiratory epithelium). SC: squamous cells. 
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Figure S10: Distribution of the cell type-specific methylation beta value estimates after deconvolution: density 
plot (A) and bean plot (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. CC: ciliated cells 
(respiratory epithelium). SC: squamous cells. 
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Table S4: Percentiles of the regression p value distributions associated with fitting multiple linear models to the 
gene expression data. 

  Percentiles % sig at 
Group Cell 5% 10% 25% 50% 75% 95% 98% 99% p < 0.05 p < 0.001 

Asthma 

AM 0.00 0.01 0.02 0.07 0.26 0.79 0.92 0.96 41.2 1.6 
NG 0.00 0.00 0.00 0.01 0.02 0.13 0.33 0.56 87.3 13.1 
EO 0.00 0.00 0.01 0.03 0.09 0.43 0.69 0.84 62.4 5.1 
LY 0.07 0.12 0.27 0.50 0.74 0.95 0.98 0.99 3.8 0.1 
CC 0.08 0.15 0.30 0.54 0.77 0.95 0.98 0.99 2.8 0.1 
SC 0.03 0.08 0.27 0.54 0.78 0.96 0.98 0.99 7.4 0.3 

COPD 

AM 0.04 0.09 0.22 0.45 0.70 0.94 0.98 0.99 5.7 0.1 
NG 0.01 0.03 0.07 0.16 0.28 0.61 0.82 0.91 17.0 0.4 
EO 0.04 0.08 0.21 0.43 0.70 0.94 0.98 0.99 6.3 0.1 
LY 0.05 0.10 0.25 0.49 0.74 0.95 0.98 0.99 4.9 0.1 
CC 0.05 0.10 0.24 0.49 0.72 0.95 0.98 0.99 5.2 0.1 
SC 0.04 0.08 0.22 0.45 0.71 0.94 0.98 0.99 6.0 0.2 

Controls 

AM 0.00 0.00 0.00 0.02 0.06 0.57 0.84 0.92 71.3 7.6 
NG 0.00 0.00 0.00 0.01 0.03 0.20 0.45 0.65 84.4 14.1 
EO 0.06 0.12 0.28 0.53 0.77 0.95 0.98 0.99 4.1 0.1 
LY 0.02 0.06 0.18 0.43 0.72 0.94 0.98 0.99 9.0 0.2 
CC 0.05 0.10 0.23 0.46 0.71 0.94 0.98 0.99 4.8 0.1 
SC 0.02 0.04 0.14 0.38 0.68 0.94 0.97 0.99 11.7 0.3 

AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. CC: ciliated cells 
(respiratory epithelium). SC: squamous cells. 
 
 
 
Table S5: Percentiles of the regression p value distributions associated with fitting multiple linear models to the 
methylation data. 

  Percentiles % sig at 
Group Cell 5% 10% 25% 50% 75% 95% 98% 99% p < 0.05 p < 0.001 

Asthma 

AM 0.00 0.00 0.00 0.01 0.05 0.34 0.59 0.75 74.5 33.3 
NG 0.00 0.00 0.00 0.00 0.00 0.04 0.08 0.13 96.0 59.4 
EO 0.00 0.00 0.00 0.00 0.01 0.12 0.27 0.41 88.9 48.2 
LY 0.05 0.09 0.23 0.47 0.72 0.94 0.98 0.99 5.2 0.1 
CC 0.04 0.08 0.22 0.47 0.73 0.95 0.98 0.99 6.1 0.1 
SC 0.00 0.01 0.03 0.16 0.53 0.90 0.96 0.98 32.3 2.0 

COPD 

AM 0.00 0.00 0.00 0.06 0.39 0.87 0.95 0.97 47.7 13.1 
NG 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.12 97.2 68.5 
EO 0.03 0.07 0.20 0.45 0.72 0.94 0.98 0.99 7.9 0.2 
LY 0.07 0.13 0.31 0.56 0.79 0.96 0.98 0.99 3.6 0.1 
CC 0.05 0.10 0.25 0.49 0.74 0.95 0.98 0.99 5.2 0.1 
SC 0.06 0.12 0.29 0.54 0.78 0.96 0.98 0.99 4.2 0.1 

Controls 

AM 0.00 0.01 0.02 0.06 0.19 0.51 0.71 0.83 44.9 1.2 
NG 0.00 0.00 0.01 0.03 0.09 0.26 0.40 0.51 62.4 2.5 
EO 0.05 0.11 0.26 0.52 0.76 0.95 0.98 0.99 4.7 0.1 
LY 0.03 0.07 0.17 0.37 0.64 0.92 0.97 0.98 7.7 0.2 
CC 0.05 0.10 0.25 0.50 0.75 0.95 0.98 0.99 5.0 0.1 
SC 0.02 0.04 0.11 0.28 0.57 0.91 0.96 0.98 11.8 0.2 

AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. LY: lymphocytes. CC: ciliated cells 
(respiratory epithelium). SC: squamous cells. 
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Figure S11: Distribution of the regression p values associated with fitting multiple linear models to the gene 
expression (A) and methylation data (B) after summarization of cell types with low prevalence. 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: sum of residual cell types 
(weighed intercept). 
 
 
 
 

Figure S12: Distribution of the cell type-specific gene expression estimates after deconvolution with the reduced 
set of cell types: density plot (A) and bean plot (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: sum of residual cell types 
(weighed intercept). 
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Figure S13: Distribution of the cell type-specific methylation beta value estimates after deconvolution with the 
reduced set of cell types: density plot (A) and bean plot (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: sum of residual cell types 
(weighed intercept). 
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Table S6: Percentiles of the regression p value distributions associated with fitting multiple linear models to the 
gene expression data after summarization of cell types with low prevalence. 

  Percentiles % sig at 
Group Cell 5% 10% 25% 50% 75% 95% 98% 99% p < 0.05 p < 0.001 

Asthma 

AM 0.00 0.00 0.00 0.00 0.04 0.60 0.83 0.92 76.2 27.9 
NG 0.00 0.00 0.00 0.00 0.00 0.07 0.34 0.56 93.6 52.5 

Other 0.02 0.07 0.26 0.53 0.77 0.95 0.98 0.99 8.5 0.6 
EO 0.00 0.00 0.00 0.01 0.04 0.32 0.59 0.77 79.2 24.0 

COPD 
AM 0.03 0.06 0.18 0.40 0.68 0.93 0.97 0.99 8.2 0.2 
NG 0.00 0.00 0.00 0.02 0.07 0.46 0.75 0.87 70.3 10.1 

Other 0.02 0.04 0.13 0.33 0.63 0.93 0.97 0.99 11.1 0.2 

Controls 
AM 0.00 0.00 0.00 0.00 0.00 0.23 0.59 0.79 88.6 63.5 
NG 0.00 0.00 0.00 0.00 0.01 0.15 0.41 0.57 90.6 56.2 

Other 0.01 0.03 0.10 0.31 0.62 0.93 0.97 0.98 15.3 0.4 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: Sum of residual cell types 
(weighed intercept). 
 
 
 
 
Table S7: Percentiles of the regression p value distributions associated with fitting multiple linear models to the 
methylation data after summarization of cell types with low prevalence. 

  Percentiles % sig at 
Group Cell 5% 10% 25% 50% 75% 95% 98% 99% p < 0.05 p < 0.001 

Asthma 

AM 0.00 0.00 0.00 0.00 0.00 0.07 0.18 0.31 93.8 66.0 
NG 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 98.7 81.4 

Other 0.00 0.00 0.01 0.10 0.49 0.90 0.96 0.98 41.9 8.2 
EO 0.00 0.00 0.00 0.00 0.00 0.05 0.15 0.27 95.0 70.1 

COPD 
AM 0.00 0.00 0.00 0.02 0.26 0.82 0.92 0.96 56.7 35.0 
NG 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 99.6 93.6 

Other 0.01 0.02 0.09 0.31 0.63 0.92 0.97 0.98 18.0 1.6 

Controls 
AM 0.00 0.00 0.00 0.00 0.01 0.11 0.29 0.49 91.3 58.8 
NG 0.00 0.00 0.00 0.00 0.00 0.05 0.13 0.25 95.4 67.0 

Other 0.00 0.00 0.01 0.10 0.44 0.88 0.95 0.98 41.5 8.5 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: Sum of residual cell types 
(weighed intercept). 
 
 
When implementing a regression model-based deconvolution approach several points have to be 
critically considered. The model’s performance is not only dependent on the achieved number of degrees 
of freedom, but also directly dependent on the quality and accuracy of the input data. Sputum differential 
cell counts should therefore be prepared with the highest resolution possible. However, cell types that 
only represent a small proportion of the cell set or that cannot be identified via a conventional differential 
cell count (such as specific subsets of lymphocytes) won’t be able to be estimated via the regression. 
The overall performance of the model in our data shows that this holds true: estimates were anticipated 
to be most reliable for those cell types that were most prevalent whilst exhibiting variability within the 
respective sample group. Consequently, in our data, this led to the estimation of expression and 
methylation in eosinophils only performing well in asthma samples. In larger-scale studies with well-
defined phenotypes, however, it may well be possible to compare transcription/methylation profiles of 
eosinophils, e.g. between asthma subgroups.  
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One of the key assumptions on which the here described models rely is linearity (linear combinability) 
of the data. For methylation measured by beta values from 0 to 1 this can be seen as holding true, though, 
needless to say, beta values themselves represent an estimate of the overall methylation level in a given 
set of cells (there exists no “50 % CpG methylation” in a single DNA strand as methylation is either 
present or absent for a single CpG site). In case of expression data, specifically from microarray 
experiments, however, a restricted dynamic range and the effect of fold change compression [39], are 
complications to the linearity assumption. Moreover, not every cell or cell type necessarily contributes 
the overall same amount of RNA molecules to the extract from mixed-cell samples whereas the amount 
of contributed DNA (copies of the genome) is constant. As RNA is generally more unstable than DNA, 
the RNA amounts contributed by cells that are seen as contaminants in sputum (such as respiratory 
epithelium or squamous cells), which, due to their loss of original cellular integrity, might exhibit higher 
RNA degradation rates than viable immune cell fractions, might furthermore be unreliably approximated 
by their respective cellular proportions. However, linearity-based deconvolution on transcriptome data 
has proven before to provide valuable information [36, 40], so we expect the assumption to 
approximately hold true. 
Wherever linearity is assumed, collinearity between predictors can cause problems. Given a large 
enough number of biological replicates, this is unlikely to occur for sputum differential cell counts. 
However, the biological interconnectedness of transcription and cell proportions (imagine a cytokine 
being strongly upregulated in one cell type and thereby enhancing attraction, proliferation or diapedesis 
of a second cell type with consequently increased presence) exhibits a further potential for transcript 
levels correlating with “wrong” cell types. Since the measured outcomes of transcriptional regulation 
(expression level) and chemotaxis (cell count) vary by different rates and relative, not absolute, cell 
counts are used as predictor in the linear regression, the risk of this resulting in false positives or 
negatives in deconvolved data can be seen as minor. Here, biological replication again benefits the 
accuracy of the deconvolution process. 
 
Simultaneously, fulfilling the requirement of linearity for deconvolution comes with statistical 
compromises that investigators should be aware of: Performing methylation analysis on beta values 
instead of the logit-transformed counterpart, M values, causes heteroscedasticity [41] which has to be 
considered when applying parametric statistical testing procedures. This extends to expression data that 
are not log2-transformed. In addition, the assumption of normality is likely violated in both cases. A 
consequent workaround for these statistical limitations can be permutative testing, as it had been 
implemented before in the csSAM package [40] for expression deconvolution (the package has not been 
maintained lately and is outdated by now). However, as permutative testing comes with additional 
limitations itself, we decided to stay with parametric testing due to computational simplicity, speed and 
reproducibility whilst setting strict significance cutoffs. In any case, significance cutoffs should be 
chosen carefully and evaluated regarding their respective performance in the analyzed data. The 
relatively low number of genes that we identified to be simultaneously regulated on both the methylation 
and transcription level could therefore be caused by applying overly strict cutoffs. Nevertheless, future 
evaluation of deconvolution performance and determination of a best practice has to take place in larger 
data sets. Some limitations in this context, such as the limited dynamic range of microarrays or fold 
change compression, are meanwhile likely to resolve with application of sequencing-based methods. 
 
 
  



 16 

 
Figure S14: Venn diagram visualizations of differential expression and methylation analysis results before and 
after deconvolution: DEGs (A, B), DMPs (C, D) and genes associated with DMRs (E, F). Results of both 
comparisons, asthma vs. controls (A, C, E) and COPD vs. controls (B, D, F), are shown. 
limma: conventional group comparison on mixed cell data (via the limma package). QP AM/NG: differential 
expression/methylation analysis on estimates after deconvolution by quadratic programming (QP), for alveolar 
macrophages (AM) and neutrophils (NG), respectively.   
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Figure S15: Deconvolved expression values and quantile ranks among estimated expression values of those 
transcripts that had been identified as DEGs in the mixed-cell analysis only (and not after QP deconvolution), 
upregulated (A) or downregulated (B) in asthma or upregulated (C) or downregulated (D) in COPD. 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: Sum of residual cell types 
(weighed intercept). 
Of those transcripts identified to be differentially expressed in the asthma group, 12.8 % were still found after 
deconvolution by quadratic programming (QP). For the COPD group, the rate was 12.9 %. However, only 1.6 and 
4.5 % of DEGs found after QP deconvolution were identified in the mixed-cell analyses, respectively (see also 
Figure S13).  
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Figure S16: Deconvolved methylation beta values and quantile ranks among estimated beta values of those CpGs 
that had been identified as DMPs in the mixed-cell analysis only (and not after QP deconvolution), 
hypermethylated (A) or hypomethylated (B) in asthma or hypermethylated (C) or hypomethylated (D) in COPD. 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: Sum of residual cell types 
(weighed intercept). 
As the overall distribution of beta values follows a bipolar pattern (see also Figure S6), the reader might find beta 
values easier to interpret than quantile ranks in this context. 
Of those DMPs found by mixed-cell analysis in the asthma group, 28.2 % were still identified after deconvolution 
by quadratic programming (QP). For the COPD group, the rate was 22.2 %. However, only 2.7 and 5.9 % of DMPs 
found after QP deconvolution were identified in the mixed-cell analyses, respectively (see also Figure S13).  
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Enrichment results 
 
 

 
 
Figure S17: Venn diagram visualizations of Gene Ontology terms enriched in DEGs (A, B) and DMRs (C, D) in 
asthma (A, C) and COPD (B, D). 
limma: conventional group comparison on mixed cell data (via the limma package). QP AM/NG: differential 
expression/methylation analysis on estimates after deconvolution by quadratic programming (QP), for alveolar 
macrophages (AM) and neutrophils (NG), respectively. 
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Integrative analysis 
 
 

 
 
Figure S18: Venn diagram visualizations of DEGs and DMR-associated genes in asthma (A, C, E) and COPD (B, 
D, F) as identified via the analysis of mixed-cell data (A, B) and deconvolved cell type-specific data for 
macrophages (C, D) and neutrophils (E, F). 
QP AM/NG: differential expression/methylation analysis on estimates after deconvolution by quadratic 
programming (QP), for alveolar macrophages (AM) and neutrophils (NG), respectively. 
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Data comparison 
 
In a search for publicly available omics data sets generated from sputum or BAL on which we could 
validate our deconvolution’s performance, we accessed the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 21 August 2020). We used the search strings “sputum 
asthma” (19 series hits), “BAL asthma” (25 series hits), “sputum COPD” (6 series hits) and “BAL 
COPD” (8 series hits) and checked the series hits manually for suitability. After excluding studies 
performed in mice, studies that did not provide data from sputum or BAL cells and studies that were 
conducted on purified cell samples, none of the remaining data sets was suitable to be supplied to our 
deconvolution approach due to missing information about the cellular composition of individual samples 
(although differential cell counts had been performed as derived from the publications associated with 
the data sets, e.g. [42]). Only one study provided detailed sputum differential cell counts with the omics 
data [43], however, the transcriptomic analysis was performed on purified macrophages and not on 
mixed-cell samples in this case. 
We further screened the encountered data and associated publications for differential transcription 
analyses performed on purified cell types to which we could compare our results. In [44], alveolar 
macrophages were purified from asthmatics and checked for differential expression against healthy 
controls. However, the sample size of the study was very low (n = 5 per group), some asthmatics 
received antihistamines whilst none of the subjects needed therapy with inhaled corticosteroids (as 
opposed to our study, indicating that the overall asthma phenotype was milder) and, according to the 
manuscript, the authors did not apply a statistical correction for multiple testing to their results. Strictly 
speaking, we did not observe an appreciable overlap between the reported DEGs and DEGs identified 
in our analysis, but considering the aforementioned points, we don’t interpret this as a falsification of 
our results. In [43] and [45], analyses were performed on purified macrophages from COPD patients. 
Since we were unfortunately not able to reliably estimate COPD macrophage profiles in our small data 
set, we refrained from comparing the reported findings to our results. In [46], a differential expression 
analysis comprising purified sputum macrophages in both asthma and COPD is presented. However, 
the purity of macrophages in the analyzed samples (a cutoff of > 50 % was applied by the authors) is 
rather low so we consider the data not macrophage-specific. 
 

 
Figure S19: Quantile ranks of genes of the eosinophil set defined by Esnault et al. amongst the deconvolved 
expression estimates of each cell type (A) and overlap between the Esnault eosinophil gene set and genes 
differentiating eosinophils from macrophages and neutrophils in our data after deconvolution (B). 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. Other: Sum of residual cell types 
(weighed intercept). QP: deconvolution by quadratic programming. 
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Esnault et al. [47] defined a core set of 57 genes predominantly expressed by asthma eosinophils through 
transcriptome analyses in BAL and sputum in the context of allergen challenges which they validated 
in purified lung eosinophils subsequently. From these 57 genes, 56 were present in our expression data 
set after the initial data processing steps. The distribution of their respective quantile ranks among the 
expression estimates is shown in Figure S19A for each deconvolved cell type. Corresponding to the 
findings by Esnault et al., we observed the gene set to be primarily expressed in eosinophils. 
 
 

 
Figure S20: Overlaps between gene sets discriminating eosinophils (A), macrophages (B) and neutrophils (C) in 
the deconvolved asthma expression data and the eosinophil gene set defined by Esnault et al. as well as cell type-
specific gene sets defined by Peters et al. 
AM: alveolar macrophages. NG: neutrophil granulocytes. EO: eosinophils. QP: deconvolution by quadratic 
programming. 
 
 
We further specified gene sets that differentiated eosinophils, neutrophils and macrophages in our 
deconvolved asthma expression data. To be associated with one of the cell types, genes had to exhibit a 
(positive) log2FC > 2 in relation to both of the other estimated cell types at a BH-corrected (one-sided) 
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p value < 0.05. Note that in this constellation, statistical testing does not necessarily give meaningful 
results since the deconvolved estimates are derived from the same original data. Concordantly, the fold 
change cutoff was observed to be the predominant criterion for selection. Please note further that under 
these circumstances, the individual genes are not truly cell-specific (cell-exclusive) but rather estimated 
to be expressed at a higher level in one of the considered cell types than in both of the others. By this 
means, 31 out of 56 genes of the Esnault et al. gene set were found to discriminate eosinophils in our 
deconvolved estimates (see Figure S19B). In light of the multifaceted experimental setup employed by 
Esnault et al., including allergen challenges as well as application of the anti-IL5 antibody mepolizumab, 
we consider this to be a rather good overlap with our data of “steady state” eosinophils (no 
therapeutic/experimental intervention in our study). 
 
Peters et al. previously derived cell-specific gene sets from transcriptome data that had been generated 
from blood and bone marrow samples and used these cell type-specific gene sets in the analysis of the 
sputum transcriptome in asthma [48]. Including these gene sets into our comparison, we observed 
predominant overlaps of our discriminating gene sets with the according cell types in the data by Peters 
et al. (see Figure S20). Furthermore, we observed that the eosinophil expression data provided by 
Esnault et al. might have been contaminated by gene expression from neutrophils in the context of the 
described allergen challenges (see overlap in Figure S20C). Otherwise, this implies that gene expression 
profiles of blood cells differ from those of cells of the same type in the lung environment. Further 
discussion concerning this issue is presented in the main manuscript. 
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