Online Supplemental Materials

Metformin Improves the Angiogenic Potential of Human CD34⁺ Cells Co-incident with Downregulating *CXCL10* and *TIMP1* Gene Expression and Increasing VEGFA under

Hyperglycemia and Hypoxia within a Therapeutic Window for Myocardial Infarction

Sherin Bakhashab^{1,3,4}, Fahad W. Ahmed^{1,2}, Hans-Juergen Schulten⁴, Ayat Bashir¹, Sajjad Karim⁴, Abdulrahman L. Al-Malki³, Mamdooh A. Gari⁴, Adel M. Abuzenadah⁴, Adeel G. Chaudhary⁴, Mohammed H. Alqahtani⁴, Sahira Lary³, Farid Ahmed⁴, Jolanta U. Weaver^{1,2*}

¹Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK

²Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne, UK

³Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia

⁴Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia

Supplementary Figure 1: Cell viability assay on HUVEC treated with sunitinib. HUVEC $(10^4 \text{ cells/ well})$ in 96 well plate were treated with increasing concentrations of sunitinib (0.01, 0.1, 1.0, 10, and 100 μ mol/L) in quadruplicates. After 6 hours CellTiter-Blue reagent (Promega) was added to each well, and the cells were incubated for 2 hours prior to recording fluorescence (560/590 nm). Results are presented as mean \pm SEM. The mean of IC50 was calculated as 16.6 μ mol/L.

Functions	<i>p</i> -Value	Predicted	Activation	Molecules	Number
Annotation		Activation	z-score		of
		State			Molecules
Inflammatory	1.09E-11	Decreased	-2.725	\downarrow AQP9, \downarrow C3, \downarrow CCL2,	19
Response				\downarrow CCL20, \downarrow CCL5, \downarrow CCR7,	
				\downarrow CD14, \downarrow CXCL5, \downarrow FOS,	
				↓IL-1α, ↓IL-6, ↓IL-8,	
				↓mir-21, ↓PLA2G7,	
				↓PPBP, ↓RGS1,	
				↑S100A8, ↓TNFAIP6,	
				↓UTS2	
Cellular	2.82E-11	Decreased	-2.274	\downarrow AQP9, \downarrow C3, \downarrow CCL2,	14
Movement				\downarrow CCL20, \downarrow CCL5, \downarrow CCR7,	
				\downarrow CXCL5, \downarrow IL-1 α , \downarrow IL-8,	
				↓PLA2G7, ↓PPBP,	
				↓RGS1, ↑S100A8, ↓UTS2	
Cell-To-Cell	4.69E-11	Decreased	-3.289	↓C3, ↓CCL2, ↓CCL5,	20
Signaling and				↓CCR7, ↓CD14,	
Interaction				↓CLEC1B, ↓CTSL1,	
				↓CXCL5, ↓DUSP1,	
				\downarrow FOS, \downarrow IL-1 α , \downarrow IL-6, \downarrow IL-	
				8, \downarrow KRT18, \downarrow MET, \downarrow mir-	
				21, ↓MS4A1, ↓NCOR2,	
				↑PPBP, ↑S100A8	
Cellular	3.92E-08	Decreased	-2.195	\downarrow CCL2, \downarrow CCL5, \downarrow DUSP1,	12
Growth and				\downarrow FOS, \downarrow IL-1 α , \downarrow IL-6, \downarrow IL-	
Proliferation				8, ↓MET, ↓mir-21,	
				↓TFPI2, ↑TOB2, ↓UTS2	

Supplementary Table 1: Effect of 3 hours hypoxia on biological functions involved in CD34⁺ cells.

Gene list was generated by using IPA software. The activation z-score was used in the calculation of significant changes in gene expression in different samples and conditions. It is calculated from the dataset and indicates activation or inhibition of the biological function as (+) indicates activation while (-) indicates inhibition. The arrow \uparrow indicates gene is upregulated and \downarrow indicates gene is downregulated. Key: *AQP9*: aquaporin 9; *C3*: complement component 3; *CCL2*: chemokine (C-C motif) ligand 2; *CCR7*: chemokine (C-C motif) receptor 7; *CD14*: CD14 molecule; *CLEC1B*: C-type lectin domain family 1, member B; *CTSL1*: cathepsin L1; *CXCL5*: chemokine (C-X-C motif) ligand 5; *DUSP1*: dual specificity phosphatase 1; *FOS*: FBJ murine osteosarcoma viral oncogene homolog; *IL-1a*: interleukin 1 alpha; *KRT18*: keratin 18; *MET*: met proto-oncogene (hepatocyte growth factor receptor); *mir-21*: microRNA 21; *MS4A1*: membrane-spanning 4-domains, subfamily A, member 1; *NCOR2*: nuclear receptor corepressor 2; *PLA2G7*: phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma); *PPBP*: pro-platelet basic protein (chemokine (C-X-C motif) ligand 7); *RGS1*: regulator of G-protein signaling 1; *S100A8*: S100 calcium binding protein A8;*TFPI2*: tissue factor pathway inhibitor 2; *TNFAIP6*: tumour necrosis factor, alpha-induced protein 6; *TOB2*: transducer of ERBB2, 2; *UTS2*: urotensin 2.

Gene Name	Gene symbol	FC	Family
Activating transcription factor 2	ATF2		transcription regulator
BCL2/adenovirus E1B 19kDa interacting protein 3	BNIP3	1.51	other
Complement component 3	C3	-1.51	peptidase

Chemokine (C-C motif) ligand 2	CCL2	-2.25	cytokine
Chemokine (C-C motif) ligand 20	CCL20	-1.64	cytokine
Chemokine (C-C motif) ligand 5	CCL5	-2.29	cytokine
CD14 molecule	CD14	-1.71	transmembrane receptor
C-type lectin domain family 1, member B	CLEC1B	-1.60	transmembrane receptor
Cathepsin L1	CTSL1	-1.67	peptidase
Chemokine (C-X-C motif) ligand 5	CXCL5	-1.68	cytokine
FBJ murine osteosarcoma viral oncogene homolog	FOS	-1.89	transcription regulator
Heparanase	HPSE	-1.44	enzyme
Interleukin 10			cytokine
Interleukin 1, alpha	IL1A	-4.67	cytokine
Interleukin 6 (interferon, beta 2)	IL6	-2.50	cytokine
Interleukin 8	IL8	-2.43	cytokine
Interferon regulatory factor 4	IRF4	-1.14	transcription regulator
Integrin, beta 8	ITGB8	-1.52	other
Met proto-oncogene (hepatocyte growth factor receptor)	MET	-1.91	kinase
Membrane-spanning 4-domains, subfamily A, member 1	MS4A1	-1.50	other
Nuclear receptor corepressor 2	NCOR2	1.70	transcription regulator
Phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)	PLA2G7	-1.59	enzyme
Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)	PPBP	-1.74	cytokine
Regulator of G-protein signaling 1	RGS1	-1.81	other
S100 calcium binding protein A8	S100A8	1.52	other
Tumour necrosis factor			cytokine
Urotensin 2	UTS2	-1.53	other
Vasohibin 1	VASH1	-1.55	other
Vascular endothelial growth factor A	VEGFA		growth factor

Supplementary Figure 2: Effect of metformin on euglycaemia-hypoxia treated CD34⁺

cells. CD34⁺ cells were treated with euglycaemia and hypoxia for 3 hours in the presence or absence of metformin for 24 hours. A set of differentially expressed genes was generated by comparing (A) euglycaemia and hypoxia versus euglycaemia or (B) euglycaemia and metformin exposed to hypoxia versus euglycaemia and hypoxia without metformin. The comprehensive network was created by IPA software. Green shades indicate downregulated, red shades indicate upregulated genes and grey unchanged genes.

Supplementary Table 2: Top 30 differentially expressed genes in CD34⁺cells induced by hyperglycaemia compared to control.

Gene Name	Gene	<i>p</i> -value	FC
	Symbol		
Lysine (K)-specific demethylase 5D	KDM5D	2.32E-11	-3.56
Selectin P (granule membrane protein 140kDa, antigen CD62)	SELP	3.27E-09	-5.01
Gamma-aminobutyric acid (GABA) A receptor, epsilon	GABRE	3.31E-09	-2.76
Integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	ITGB3	3.71E-09	-6.70
Chromosome Y open reading frame 15B	CYorf15B	3.74E-09	-5.06
Coagulation factor XIII, A1 polypeptide	F13A1	4.77E-09	-3.50
Polycystic kidney and hepatic disease 1 (autosomal recessive)-l	PKHD1L1	6.50E-09	-6.43
KIAA0087	KIAA0087	1.40E-08	2.48
Chromosome Y open reading frame 15A	CYorf15A	2.26E-08	-4.54
DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked	DDX3Y	2.29E-08	-4.16
Ubiquitously transcribed tetratricopeptide repeat gene, Y-linked	UTY	2.94E-08	-3.89
Heparanase	HPSE	3.39E-08	-2.81
Nexilin (F actin binding protein)	NEXN	9.83E-08	-3.21
Major histocompatibility complex, class II, DQ beta 1	HLA-DQB1	1.03E-07	-7.01
Ubiquitin specific peptidase 9, Y-linked	USP9Y	1.19E-07	-3.83
Major histocompatibility complex, class II, DQ beta 1	HLA-DQB1	1.44E-07	-8.74
Galectin-related protein	HSPC159	1.55E-07	-5.74
Epithelial cell adhesion molecule	EPCAM	2.04E-07	-2.96
Zinc finger protein, Y-linked	ZFY	2.10E-07	-3.23
Dynamin 3	DNM3	2.35E-07	-2.06
Eukaryotic translation initiation factor 1A, Y-linked	EIF1AY	3.09E-07	-4.85
Phosphodiesterase 3A, cGMP-inhibited	PDE3A	3.98E-07	-2.52
Olfactory receptor, family 3, subfamily A, member 2	OR3A2	4.25E-07	2.31
Snail homolog 2 (Drosophila)	SNAI2	4.51E-07	2.16
Glycoprotein Ib (platelet), alpha polypeptide	GP1BA	6.25E-07	-2.70
Testis-specific transcript, Y-linked 10 (non-protein coding)	TTTY10	6.58E-07	-2.58
Latent transforming growth factor beta binding protein 1	LTBP1	6.69E-07	-2.94
C-type lectin domain family 1, member B	CLEC1B	1.06E-06	-4.25
Potassium channel, subfamily K, member 17	KCNK17	1.17E-06	2.55
Immunoglobulin lambda joining 3	IGLJ3	1.76E-06	2.31

The gene list was created by importing Affymetrix .CEL files to Partek Genomic Suite version 6.6. The data were RMA normalized. Differentially expressed gene list was generated using one-way ANOVA, FDR-unadjusted *p*-value < 0.05 with a fold change cutoff of 1.5 was applied.

Functions	<i>p</i> -Value	Predicted Activation State	Activation z-score	Molecules	Number of Molecules
Cell-To-Cell Signaling and Interaction	1.80E-17	Decreased	-2.27	$ \begin{array}{l} \downarrow AVPR1A, \downarrow BDNF, \uparrow BLNK, \uparrow BTLA, \downarrow CCL2, \\ \uparrow CCR7, \downarrow CD14, \downarrow CD226, \downarrow CD24, \downarrow CD36, \\ \uparrow CD3E, \uparrow CD79A, \downarrow CLEC1B, \downarrow CTSL1, \\ \downarrow CXCL2, \downarrow FCER1A, \downarrow GP1BA, \downarrow GP5, \downarrow GP6, \\ \uparrow HCK, \downarrow HLA-DQA1, \downarrow HLA-DQB1, \downarrow HPSE, \\ \uparrow IGHM, \uparrow IGK, \downarrow IL-18, \downarrow IL-1\alpha, \downarrow IL-6, \downarrow IL-8, \\ \uparrow IRF4, \downarrow ITGA2B, \downarrow ITGB3, \downarrow VEGFR-2, \\ \downarrow LTBP1, \downarrow MET, \uparrow MS4A1, \uparrow NCOR2, \uparrow NCR1, \\ \downarrow NTS, \downarrow PF4, \uparrow PLD2, \downarrow PPBP, \downarrow PRKCA, \\ \downarrow PROS1, \downarrow PTGS2, \downarrow PTPRJ, \uparrow S100A12, \\ \uparrow S100A8, \downarrow SELP, \uparrow SH2D1A, \uparrow TCL1A, \\ \downarrow THBS1, \downarrow TLR4, \uparrow TLR7, \uparrow TNFRSF17, ↓ VIP, \\ \downarrow VWF \end{array} $	57
Cellular Growth and Proliferation	1.21E-12	Decreased	-1.40	$ \begin{array}{l} \uparrow BLNK, \ \uparrow BTLA, \ \downarrow CCL2, \ \uparrow CCR7, \ \downarrow CD14, \\ \downarrow CD226, \ \downarrow CD24, \ \downarrow CD36, \ \uparrow CD3E, \ \uparrow CD79A, \\ \downarrow CLECL1B, \ \downarrow CXCL2, \ \downarrow FYB, \ \uparrow HCK, \ \downarrow HLA- \\ DQA1, \ \downarrow HLA-DQB1, \ \uparrow IGHM, \ \uparrow IGKC, \ \uparrow IKZF3, \\ \downarrow IL-18, \ \downarrow IL-3RA, \ \downarrow IL-6, IL-8, \ \downarrow INHBA, \\ \uparrow IRF4, \ \downarrow ITGA2B, \ \downarrow ITGB3, \ \downarrow LTBP1, \ \uparrow LY9, \\ \uparrow MS4A1, \ \downarrow PDE5A, \ \downarrow PF4, \ \downarrow PTGS2, \ \downarrow PTPRJ, \\ \downarrow RUNX1T1, \ \uparrow SH2D1A, \ \uparrow SNAI2, \ \uparrow TCL1A, \\ \downarrow THBS1, \ \downarrow TLR4, \ \uparrow TLR7, \ \uparrow TNFRSF17, \ \downarrow VIP \\ \end{array} $	44
Inflammatory Response	1.59E-12	Decreased	-1.18	$ \begin{array}{l} \uparrow BLNK, \ \uparrow BTLA, \ \downarrow CCL2, \ \uparrow CCR7, \ \downarrow CD14, \\ \downarrow CD226, \ \uparrow CD3E, \ \uparrow CD79A, \ \downarrow CLEC1B, \ \downarrow CTSL1, \\ \uparrow HCK, \ \downarrow HLA-DQA1, \ \downarrow HLA-DQB1, \ \downarrow HPSE, \\ \uparrow IGHM, \ \downarrow IL-18, \ \downarrow IL-1\alpha, \ \downarrow IL-6, \ \downarrow IL-8, \ \uparrow IRF4, \\ \downarrow LTBP1, \ \downarrow MET, \ \uparrow NCOR2, \ \uparrow NCR1, \ \downarrow PF4, \\ \uparrow PLD2, \ \downarrow PRKCA, \ \downarrow PROS1, \ \downarrow PTGS2, \ \downarrow PTPRJ, \\ \uparrow S100A12, \ \uparrow S100A8, \ \uparrow SH2D1A, \ \uparrow TCL1A, \\ \downarrow THBS1, \ \downarrow TLR4, \ \uparrow TLR7, \ \uparrow TNFRSF17, \ \downarrow VIP \\ \end{array} $	39
Cellular Movement	2.60E-11	Decreased	-3.31	\downarrow AQP9, \downarrow BDNF, \uparrow BTLA, \downarrow CCL2, \uparrow CCR7, \downarrow CD14, \downarrow CD226, \uparrow CD36, \downarrow CD3E, \downarrow CLEC1B, \downarrow CTTN, \downarrow CXCL2, F13A1, \downarrow FCER1A, \downarrow FYB, \downarrow GP1BA, \downarrow GP6, \uparrow HCK, \downarrow IL-18, \downarrow IL-1 α , \downarrow IL-6, \downarrow IL-8, \downarrow INHBA, \downarrow ITGA2B, \downarrow ITGB3, \downarrow VEGFR- 2, \downarrow PF4, \downarrow PLA2G7, \downarrow PPBP, \downarrow PRKCA, \downarrow PTGS2, \downarrow PTPRJ, \downarrow S100A10, \uparrow S100A12, \uparrow S100A8, \downarrow SELP, \uparrow SH2D1A, \downarrow THBS1, \downarrow TLR4, \uparrow TLR7, \uparrow TNFSF8, \downarrow UTS2, \downarrow VIP, \downarrow VWF	44

Supplementary Table 3: Top biological functions involved in CD34⁺cells cultured in hyperglycaemia.

The affected biological functions were generated by analysis of the gene list using IPA software. The activation z-score was used in the calculation of significant changes in gene expression in different samples and conditions. It is calculated from the dataset and indicates activation or inhibition of the biological function as (+) indicates activation while (-) indicates inhibition. The arrow \uparrow indicates gene is upregulated and \downarrow indicates gene is downregulated. Key: <u>AOP9</u>: aquaporin 9; <u>AVPR1A</u>: arginine vasopressin receptor 1A; <u>BDNF</u>: brain-derived neurotrophic factor; <u>BLNK</u>: B-cell linker; <u>BTLA</u>: B and T lymphocyte associated; <u>CCL2</u>: chemokine (C-C motif) ligand 2; <u>CCR7</u>: chemokine (C-C motif) receptor 7; <u>CD14</u>: CD14 molecule; <u>CD226</u>: CD226 molecule; <u>CD3E</u>: CD3e molecule, epsilon (CD3-TCR complex); <u>CD79A</u>: CD79a molecule, immunoglobulin-associated alpha; <u>CLEC1B</u>: C-type lectin domain family 1, member B; <u>CTSL1</u>: cathepsin L1; <u>CXCL2</u>: chemokine (C-X-C motif)

ligand 2; <u>F13A1</u>: coagulation factor XIII, A1 polypeptide; <u>FCER1A</u>: Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide; FYB: FYN binding protein; GP1BA: glycoprotein Ib (platelet), alpha polypeptide; GP5: glycoprotein V (platelet); HCK: hemopoietic cell kinase; HLA-DQA1: major histocompatibility complex, class II, DQ alpha 1; HPSE: heparanase; IGHM: immunoglobulin heavy constant mu; IGK: immunoglobulin kappa locus; IKZF3: IKAROS family zinc finger 3 (Aiolos); IL-18: interleukin 18; INHBA: inhibin, beta A; IRF4: interferon regulatory factor 4; ITGA2B: integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41); ITGB3: integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61); ITBP1: latent transforming growth factor beta binding protein 1; LY9: lymphocyte antigen 9; MET: met proto-oncogene (hepatocyte growth factor receptor); MS4A1: membrane-spanning 4-domains, subfamily A, member 1; NCOR2: nuclear receptor corepressor 2; <u>NCR1</u>: natural cytotoxicity triggering receptor 1; <u>NTS</u>: neurotensin; <u>PDE5A</u>: phosphodiesterase 5A, cGMP-specific; PF4: platelet factor 4; PLA2G7: phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma); PLD2: phospholipase D2; PPBP: pro-platelet basic protein (chemokine (C-X-C motif) ligand 7); PRKCA: protein kinase C, alpha; PROS1: protein S (alpha); PTGS2: prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase); PTPRJ: protein tyrosine phosphatase, receptor type, J; RUNX1T1: runt-related transcription factor 1; translocated to, 1 (cyclin D-related); S100A12: S100 calcium binding protein A12; <u>SELP</u>: selectin P (granule membrane protein 140kDa, antigen CD62); SH2D1A: SH2 domain containing 1A; SNAI2: snail homolog 2 (Drosophila); TCL1A: T-cell leukemia/lymphoma 1A; THBS1: thrombospondin 1; TLR4: toll-like receptor 4; TNFRSF17: tumour necrosis factor receptor superfamily, member 17; UTS2: urotensin 2; VEGFR-2: vascular endothelial growth factor receptor-2; VIP: vasoactive intestinal peptide; VWF: von Willebrand factor.

Supplementary Table 4: Top canonical pathways involved in CD34⁺ cells cultured in hyperglycaemia.

Ingenuity Canonical Pathways	<i>P</i> -value	Molecules
Atherosclerosis Signaling	3.2E-07	↓IL8, ↓IL1A, ↓IL18, ↓CCL2, ↓SELP, ↓CD36, ↓ALOX12, ↑S100A8, ↓IL6, ↓PLA2G7
T Helper Cell Differentiation	6.6E-04	↓IL18, ↓HLA-DQA1, ↑HLA-DOB, ↓HLA-DQB1, ↓IL6, ↓HLA-DRB5
IL-6 Signaling	2.1E-03	\downarrow IL8, \downarrow IL1A, \downarrow IL18, \downarrow CD14, \downarrow IL6, \downarrow TNFAIP6

The arrow \uparrow indicates gene is upregulated and \downarrow indicates gene is downregulated. For genes key refer to Supplementary Table 3 legend.

Gene Name	Gene Symbol	<i>p</i> -value	FC
Small nucleolar RNA, H/ACA box 70C (retrotransposed)	SNORA70C	1.41E-03	1.95
HFM1, ATP-dependent DNA helicase homolog (S. cerevisiae)	HFM1	1.73E-03	-1.62
Eyes shut homolog (Drosophila)	EYS	2.10E-03	-1.53
Small Cajal body-specific RNA 16	SCARNA16	2.13E-03	-1.51
Ribosomal protein S6 pseudogene 6	RPS6P6	2.91E-03	1.79
Small nucleolar RNA, H/ACA box 71C	SNORA71C	2.99E-03	-1.59
Transmembrane protein 45A	TMEM45A	3.00E-03	-1.52
Ubiquitin specific peptidase 18	USP18	3.10E-03	1.63
Small nucleolar RNA, C/D box 94	SNORD94	3.94E-03	-1.51
Microfibrillar associated protein 5	MFAP5	5.58E-03	-1.54
Small nucleolar RNA, H/ACA box 68	SNORA68	5.69E-03	-1.60
CD177 molecule	CD177	5.72E-03	-1.86
Nuclear transport factor 2-like	LOC128322	6.53E-03	1.58
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kDa	NDUFA4	6.77E-03	-1.53
Family with sequence similarity 72, member D	FAM72D	7.17E-03	-1.64
SPANX family, member E	SPANXE	7.19E-03	1.58
Small Cajal body-specific RNA 6	SCARNA6	8.70E-03	-1.89
Heat shock protein 90kDa alpha (cytosolic), class A member 6	HSP90AA6P	9.46E-03	2.34
Chromosome 4 open reading frame 11	C4orf11	9.60E-03	1.58
Epithelial cell adhesion molecule	EPCAM	9.93E-03	-2.06
Golgin A6 family, member A	GOLGA6A	9.94E-03	1.89
Small nucleolar RNA, C/D box 15A	SNORD15A	1.04E-02	-1.52
Coiled-coil domain containing 122	CCDC122	1.22E-02	-1.51
Small Cajal body-specific RNA 1	SCARNA1	1.24E-02	-1.86
Small nucleolar RNA, H/ACA box 21	SNORA21	1.32E-02	-1.57
Golgin A6 family, member A	GOLGA6A	1.38E-02	1.72
Small nucleolar RNA, H/ACA box 52	SNORA52	1.40E-02	-1.64
Glutathione S-transferase alpha 3	GSTA3	1.42E-02	1.64
Small nucleolar RNA, H/ACA box 23	SNORA23	1.48E-02	-1.62
Small nucleolar RNA, H/ACA box 54	SNORA54	1.55E-02	-1.74

Supplementary Table 5: Top 30 differentially expressed genes in CD34⁺cells induced by hyperglycaemia and treated with metformin compared to hyperglycaemia.

Refer to legend in Supplementary Table 2.

Canonical Pathways	<i>P</i> -value	Molecules
Mitochondrial Dysfunction	2.0E-03	↓COX6B1, ↓ATP5D, ↓COX8A, ↑MAPK9, ↓NDUFA3, ↓CYB5A, ↓COX5B, ↓MT-ND2
Triacylglycerol Biosynthesis	7.1E-03	↓GPAM, ↑AGPAT9, ↑ELOVL6
MAPK Signaling	7.9E-03	↓CXCL10, ↓MAP2K7, ↓PLA2G10, ↑MAPK9
Type 1 Diabetes Mellitus Signaling	9.5E-03	↓SOCS1, ↓MAP2K7, ↑IKBKG, ↓FCER1G, ↑MAPK9
IL-8 Signaling	2.3E-02	↑IKBKG, ↓ICAM1, ↓RHOG, ↓VEGFB, ↑MAPK9, ↑IRAK4

Supplementary Table 6: Effect of metformin on canonical pathways involved in CD34⁺ cells cultured in combined hyperglycaemia-hypoxia for 3 hours.

The arrow \uparrow indicates gene is upregulated and \downarrow indicates gene is downregulated. Key: *AGPAT9*: 1acylglycerol-3-phosphate O-acyltransferase 9; *ATP5D*: ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit; *COX5B*: cytochrome c oxidase subunit Vb; *COX6B1*: cytochrome c oxidase subunit VIb polypeptide 1 (ubiquitous); *COX8A*: cytochrome c oxidase subunit VIIIA (ubiquitous); *CXCL10*: chemokine (C-X-C motif) ligand 10; *CYB5A*: cytochrome b5 type A (microsomal); *ELOVL6*: ELOVL Fatty Acid Elongase 6; *FCER1G*: Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide; *GPAM*: glycerol-3-phosphate acyltransferase, mitochondrial; *ICAM1*: intercellular adhesion molecule 1, *IKBKG*: inhibitor of Kappa light polypeptide gene enhancer in B-Cells, kinase gamma; *IRAK4*: interleukin-1 receptor-associated kinase 4; *MAPK9*: mitogen-activated protein kinase 9; *MAP2K7*: mitogen-activated protein kinase 7; *MT-ND2*: mitochondrially Encoded NADH Dehydrogenase 2; *NDUFA3*: NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9kDa; *PLA2G10*: phospholipase A2, group X; *RHOG*: ras homolog gene family, member G (rho G); *SOCS1*: suppressor of cytokine signaling 1; *VEGFB*: vascular endothelial growth factor B.

Supplementary Figure 3: Validation of selected pro-angiogenic factors and angiogenic inhibitors in CD34⁺ cells by qRT-PCR. The variation in mRNA levels of (A) *CCL2*, (B) *CCL5*, (C) *HGF*, (D) *IL-1a*, (E) *IL-6*, (F) *IL-8*, (G) *SELP* (H) *CXCL10* and (I) *TIMP1* was measured by qRT-PCR (n = 3). Results are presented as \pm SEM and were statistically analysed using one-way ANOVA followed by Fisher's LSD test. Data for effects of hypoxia and hyperglycemia were compared with control (5.5 mmol/L), data for the effect of hyperglycemia-hypoxia were compared with hyperglycemia. Whereas, data for cells treated with metformin were compared with the corresponding metformin-untreated condition. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Supplementary Figure 4: Heatmap of the pro-angiogenic and angiogenic inhibitors in CD34⁺ stem cells. Results were generated by transcriptomic analysis of 10 different experimental conditions each processed in two technical replicates resulting in 20 array experiments using Affymetrix microarray after exposure of CD34⁺ cells to 4% hypoxia for 3 hours either under euglycaemia or hyperglycaemia in the presence or absence of metformin. The heatmap was generated by using Partek software. Red shading indicates upregulated genes, whereas blue shading indicates downregulated genes, and grey shading indicates non-affected genes. Key: <u>1A</u>: euglycaemia, <u>1B</u>: euglycaemia with metformin, <u>2A</u>: euglycaemia with hypoxia, <u>2B</u>: euglycaemia with hypoxia + metformin, <u>3A</u>: hyperglycaemia, <u>3B</u>: hyperglycaemia with metformin, <u>4A</u>: hyperglycaemia with hypoxia, <u>4B</u>: hyperglycaemia with hypoxia + metformin.

Condition	Euglycaemia + metformin versus euglycaemia				glycaemia + metformin Euglycaemia-hypoxia :sus euglycaemia versus euglycaemia						Euglycaemia-hypoxia + Hyperg metformin versus euglycaemia + hypoxia						yperglycaemia versus Hyperglycaemia + iglycaemia metformin versus hyperglycaemia						Hyperglycaemia-hypoxia versus hyperglycaemia					Hyperglycaemia-hypoxia + metformin versus hyperglycaemia-hypoxia				
Gene	Microarray		croarray qRT-PCR		Γ-PCR Micro		croarray qRT-PCR		Microarray qF		qRT-I	qRT-PCR		Microarray qRT-PO		PCR	Microarray		qRT-PCR		Microa	Microarray		PCR	Microarray		qRT-PCR					
	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р	FC	Р				
CCL2	-1.7	3.2E-03	-2.1	< 0.001	-2.3	1.3E-04	-3.2	< 0.001	1.2	1.4E-01	1.3	3.7E-02	-2.1	2.5E-04	-3.4	< 0.001	-1.2	1.5E-01	1.2	3.6E-01	-1.1	5.7E-01	-1.2	2.3E-01	-1.3	6.9E-02	-1.2	5.2E-01				
CCL5	-1.8	4.7E-04	-2.8	< 0.001	-2.3	3.1E-05	-4.2	< 0.001	1.0	8.2E-01	1.0	9.6E-01	-1.5	5.8E-03	-2.1	< 0.001	-1.0	7.6E-01	-1.0	8.3E-01	-1.0	8.4E-01	-1.3	8.5E-02	-1.2	2.5E-01	1.0	9.4E-01				
HGF	-1.1	7.2E-01	1.2	8.6E-02	1.0	8.9E-01	-1.3	4.5E-02	-1.0	8.9E-01	-1.3	3.9E-02	-1.3	3.7E-02	-2.5	< 0.001	-1.2	1.5E-01	1.7	1.0E-03	-1.6	2.3E-03	1.0	9.0E-01	1.1	4.2E-01	-1.3	4.7E-01				
IL-1a	-3.7	2.4E-05	-8.3	< 0.001	-4.7	5.2E-06	-16.7	< 0.001	1.1	6.5E-01	1.0	1.0E+00	-3.8	1.9E-05	-11.1	< 0.001	-1.2	3.1E-01	1.0	9.2E-01	-1.5	5.0E-02	-25.0	1.4E-02	1.1	7.6E-01	1.0	8.7E-01				
IL-6	-2.2	1.7E-04	-20.0	< 0.001	-2.5	5.5E-05	-20.0	< 0.001	-1.0	9.6E-01	-1.1	9.1E-01	-2.1	2.5E-04	-16.7	< 0.001	1.1	7.5E-01	2.8	1.4E-02	-1.1	6.2E-01	-1.3	6.8E-01	1.0	8.4E-01	-2.8	6.1E-01				
IL-8	-1.6	1.1E-02	-2.5	< 0.001	-2.4	9.5E-05	-4.3	< 0.001	1.2	1.8E-01	1.2	5.5E-01	-1.7	4.7E-03	-3.1	< 0.001	-1.3	1.5E-01	1.3	2.5E-01	-2.1	3.5E-04	-2.4	6.1E-02	-1.3	1.4E-02	-1.3	7.3E-01				
SELP	-1.4	4.2E-03	-1.3	2.5E-02	-1.2	1.3E-01	-1.3	3.2E-02	1.1	2.5E-01	-1.1	2.1E-01	-5.0	3.3E-09	-6.7	< 0.001	-1.1	1.5E-01	-1.1	5.5E-01	-1.1	4.9E-01	-1.3	4.6E-01	1.0	7.5E-01	-1.1	8.8E-01				
CXCL10	1.1	6.4E-01	1.2	8.2E-01	1.2	5.4E-01	1.9	3.7E-01	1.4	2.1E-01	1.4	3.7E-01	1.6	6.9E-02	-1.1	9.4E-01	-1.4	1.7E-01	1.6	5.6E-01	1.9	2.0E-02	3.9	7.0E-03	-2.0	1.3E-02	-3.3	1.1E-02				
TIMP1	1.2	7.4E-02	-1.1	5.7E-01	1.1	2.1E-01	-1.0	7.9E-01	-1.0	7.8E-01	-1.1	6.2E-01	1.1	5.1E-01	-1.6	5.6E-02	-1.2	1.6E-01	1.5	1.7E-01	2.4	6.3E-06	1.4	1.0E-03	-1.7	3.9E-04	-1.3	2.5E-01				

Supplementary Table 7: Comparison of microarray and real-time PCR data on CD34⁺ cells treated with hypoxia, hyperglycaemia and hyperglycaemia-hypoxia in the presence and absence of metformin.

The highlighted data showed non-concordance in gene expression between qRT-PCR and microarray. Although hyperglycaemia and metformin resulted in an increase of mRNA levels of *HGF* and *IL-6* this remained below normal level observed at euglycaemia.