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1. Basic principles: using Maximum Likelihood (ML) methodology to 

estimate allele and haplotype frequencies from blood samples. 

  
 

In natural systems the same observation can arise in several different ways, making 

the data ambiguous and „standard‟ statistical analysis problematic. This often occurs 

in genetic datasets: 

 

 A classic case in population genetics is the familiar ABO system of blood 

groups where A and B types can be detected but O simply reflects the absence 

of A and B. Humans are diploid so people of blood type A and B are 

genetically ambiguous: people with blood group phenotype A can be genotype 

AA or AO  and people of blood group phenotype B could be genotyp BB or 

BO [people with groups O and AB are unambiguous and have genotypes OO 

and AB respectively]. 

 

 An analogous situation arises in malaria when examining a single mutation 

e.g. the crtK76T mutation or the dhfr108 mutation. For example a person with 

four malaria clones may contain both mutant and wildtype forms of a marker 

but it not possible to distinguish the relative frequencies of the clonal 

genotypes i.e. 1:3, 2:2 or 3:1.  

 

 

 A more complicated case occurs in haplotypes defined at more than one 

codon. For example, a patient may be infected by two malaria clones and 

genotyping reveals the presence of only mutants at position 108 and the 

presence of both mutant and wildtype at positions 51 and 59; consequently, it 

is impossible to distinguish whether the clones are (i) mutant at 108 in one 

clonal haplotype and mutant at 108+51+59 in the other haplotype, or (ii) 

mutant at 108+51 in one clone haplotype and mutant at 108+59 in the other 

haplotype. The situation becomes ever more complex as MOI increases.  

 

Put simply, we can measure the prevalence of mutations in P. falciparum but, because 

of the complication of multiple infections and resulting genetic ambiguitiy, we cannot 

directly estimate their frequency. 

 

The standard way of analysing this type of dataset is by Maximal Likelihood (ML). A 

general introduction to this methodology can be found in (1, 2) and its application to 

this problem in malaria is described in (3, 4). Basically an ML analysis consists of 

initially guessing the values of the required parameters such as haplotype frequencies, 

measuring how consistent these frequencies are with the observed prevalence of 

mutations in the blood samples, and then to continue changing and improving 

estimated values of mutation/haplotype frequencies until they provide the best match 

to the data. Eventually a combination of parameters values (haplotype frequencies) is 

obtained that is the most likely combination to have given the observed data set. 95% 

confidence intervals around these estimates are then obtained by varying the 

parameter values away from the best estimate.  
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A simple example is shown on Figure 1 in which the parameter of interest is the 

frequency of the P. falciparum dhfr108 mutation. Its frequency is varied along the 

Xaxis and  the corresponding likelihood of observing the dataset is plotted on the 

Yaxis. The 95% confidence limit occurs when the likelihood is less than 2 log units 

below the maximum likelihood. So in the example given on Figure 1 the best estimate 

of dhfr108 frequency is 0.45 and 95% CI is approx. 0.35 to 0.55. 

 

This illustrates the general principle involved in ML analysis but is the simplest 

possible case because only a single parameter (dhfr108 mutant frequency) is being 

estimated. If the analysis is extended to haplotypes defined at three codons (e.g. dhfr 

108, 51 and 59) then there are 3
2
=8 different haplotypes and Figure 1 would have to 

be in 7 dimensions (because only 7 frequencies need to be varied, the eight frequency 

must be fixed to ensure the frequencies add up to one). It is obviously impossible to 

show a 7 dimensional graph but the calculations proceed in the same way: all 7 

haplotype frequencies are systematically varied to find the set of frequencies with the 

best match to the observed data set. These are the ML estimated frequencies. The log 

likelihood (LL) is noted  at this point and each of the 8 frequencies are then changed 

until the LL falls 2 units below the maximum at which point the 95% confidence 

intervals have been identified. 

 

On a technical note: In practice it is unrealistic to examine all possible combinations 

of parameters so a „hill climbing‟ method is used (Figure 1B). Each parameter is 

varied in turn (increased or decreased in value) to see whether it increases the 

likelihood. If it does, the new value became the current best estimate, and the next 

parameter is varied and so on. This method eventually converges on the best 

combination of parameters. 

 

The process is conceptually simple but requires considerable amounts of computer 

time, hence the development and distribution of this program. 
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Figure 1. The maximum likelihood (ML) method. In this simple example each person 

has only 1 malaria clone is his/her blood. There are 100 samples in the dataset and 45 

of them contain the mutant. 

 

 

(A) How ML calculates best estimates and 95% confidence intervals. ML works by 

considering each possible frequency of the mutation (along the X-axis) and 

calculating the logarithm of the likelihood (LL) of obtaining that dataset if the 

assumed frequency was correct (using the binomial distribution in this case). Not 

surprising the maximum likelihood occurs when the assumed frequency is 0.45 and 

this is the ML best estimate. The 95% confidence interval (or 95% support interval) is 

when the log likelihood is less than 2 log units below the maximum, 0.35 to 0.55 in 

this case. 

 

 

 

 

(B) Hill climbing methods. The relationship between estimated frequency and LL is 

often mathematically complex or unknown so is illustrated by a dotted line. Hill 

climbing works by guessing the initial frequency (0.2 in this case) and changing its 

value to see if the change increases or decreases LL. If the change increases LL 

(indicated by green arrows in this example) the altered frequency becomes the current 

best ML estimate. If the change decreases LL (red arrows) the change is ignored and 

the previous value is retained. The process is repeated until the Hill climbing 

algorithm eventually finds the maximum likelihood. 95% CI are found as above by 

altering each frequency until it falls 2 log units below the maximum LL. 

 

 

 

Hill climbing is used by this programme because several (unto eight) haplotype 

frequencies need to be investigated and there may be several malaria clones in each 

blood sample. Consequently, it is not possible (or extremely complicated) to work out 

an algebraic relationship between the haplotype frequencies and LL so a hill climbing 

algorithm is employed 

  



6 

 

Figure 1(A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1(B). 
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2. Decisions required before data analysis. 
 

(i) How many codons to analyse? 

 

The programme analyses haplotypes defined at 1, 2 or 3 codons.  

 

I am reluctant to expand the programme to analyse more than 3 codons because: 

 

 The complexity increased exponentially, there being 2
n
 haplotypes for n 

codons. For haplotypes defined at three codons  n=3 so there are 8 haplotypes 

(and three of the dhfr haplotypes are often ignored as being „impossible‟ i.e. 

51, 59 and 51+59, meaning only 5 dhfr haplotypes are analysed). For 

haplotypes defined at 5 codons 32 different haplotypes have to be estimated. 

The confidence intervals will presumably get larger, the programme will take 

longer to run, and technically the programme will get much more complicated 

 

 It is not clear what benefit, if any, would accrue from increasing the number of 

codons. For example, if  investigating the dhfr164 mutation, it is known that it 

invariably occurs in the presence of mutations at dhfr codon 51, 59 and 108 so 

it is possible to ignore the other codons and simply calculate the frequency of 

the dhfr164 mutation. Similarly for pfcrt there are mutations at many sites but 

most analyses will concentrate on the K76T, for mdr it will be codon 86 and 

so on. 

 

Human nature dictates that  if you have genotyped lots of codons it is difficult to 

simply ignore some of them but unless there are pressing reasons why more than 3 

codons have to be simultaneously analysed I am reluctant to further expand the 

programme. 

 

Similarly, think carefully about how many codons to analyse. Just because you can 

analyse 3 codons simultaneously does not mean you have to analyse all three. Once 

the data are collected it is only natural to want to analyse them as much as possible. 

There is nothing wrong with this strategy as a basic investigation but be careful when 

publishing them. For example, mutations in crt are known to affect CQ resistance. 

The K76T is thought to be the key mutations but there are several more scattered over 

other sites. It makes sense to estimate the frequency of the K76T alone: only a single 

codon is analysed and this should reduce confidence intervals. You could then expand 

the analysis to look at lots of other haplotypes but ask yourself what this will add to 

the analysis when publishing because the referees will certainly do so. 

 

(ii) Will the analyses be constrained by sample size? 

There is an option to simulate datasets to check the accuracy of the analysis (see 

later). Simulations have shown that analyses may become erratic at small sample sizes  

but is robust at larger sample sizes. You should always simulate datasets to check for 

robust analyses, see later. The obvious question is how big a sample size is sufficient? 

The same question arises in multiple and logistic regression so, in the absence of any 

better guidance, I suggest you use the same general rule of thumb i.e. that you need at 

least 10 observation for each entity (haplotype) that you are trying to measure. So 

analysis of a single codon, gives 2 haplotypes so minimum sample size is 20 (only 
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one frequency is actually being estimated, the other is constrained to sum to unity, but 

its best to be conservative). Analysing two codons  gives 4 haplotypes, so minimum 

sample size is 40. Analysing four codons gives 8 haplotypes, so minimum sample size 

is 80. Analysing the restricted set of 5 dhfr haplotypes means minimum sample size is 

50.  

 

 

(iii) Mutations in different genes. 

 

It is tempting to want to analyse haplotypes defined at codons in more than one gene 

e.g. the dhfr108+dhfr51+dhfr59+dhps437+dhps540 'quintuple mutant' or the  

crt76+crt220+mdr80 „triple‟ mutation. These are true haplotypes within individual 

parasites but they consist of mutations in  separate, unlinked genes. This makes things 

much more complicated and involves the concept of linkage disequilibrium (LD). LD 

measures the non-random association between mutations in different genes (e.g. dhfr 

and dhps) that occurs within individual parasites as a balance between two opposing 

forces 

 Drug pressure acts to increase LD because mutations in different genes 

become (temporarily) associated due to their joint ability to survive drugs. 

 Genetic recombination during the obligate sexual phase of the malaria 

lifecycle acts to randomise the mutations in separate genes thereby destroying 

LD. 

The magnitude of LD therefore depends on local clinical practice (which determines 

the level and pattern of drug use) and local malaria epidemiology (which determines 

the frequency of mixed infections and consequently the amount of recombination).  

 

In effect, by looking at haplotypes involving more that one gene you have moved 

from the realms of molecular genetics to the realm of population genetics. LD and 

malaria population structure is a hugely controversial area and is best avoided unless 

you have the requisite specialist technical knowledge (and possibly best avoided even 

then). 

 

The best way to analyse such data is probably to estimate the haplotype frequencies at 

each locus separately and then predict the joint haplotype frequency assuming they 

are in linkage equilibrium (i.e. randomly associated) with a suitable caveat e.g. 

 

“The estimated frequency of dhfr108+51+59 haplotype was 67% and that of the 

dhps437+540 haplotype was 50%. This leads to estimated frequency of the quintuple 

mutation of 0.67x0.5 = 32%. Note that this is likely to be a slight underestimate of the 

true quintuple frequency because non-random association of the mutations (linkage 

disequilibrium) may have arisen as a consequence of drug pressure and local malaria 

epidemiology”. 

 

This should satisfy reviewers that you are aware of the problem and most specialists 

would appreciate why you have taken a simple approach.  

 

If you have a large number of single-clone infections you could estimate LD directly 

and bring it into your calculations but you need some population genetic knowledge 

to do this. 
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The above is only a suggestion and there may well be different and better approaches 

to this problem of LD; I‟m happy to hear of alternatives. 

 

Note that in principle you could estimate LD using the programme e.g. by estimating 

frequency of mdr80 alone, crt76 alone, and joint mdr80+crt76 haplotype frequency 

but I don‟t even want to think about how you could attach standard errors or 

confidence intervals to the estimate (they are usually constructed by permutation test 

using specialist computer software such as Popgene or Arlequin). 

 

 

(iv) Calculating dhfr haplotype frequencies 

 

Haplotypes at this locus are usually defined by mutations at codons 108, 51 and 59 

which makes 8 haplotypes in total. However experience has show that certain 

haplotypes are so rare that their frequencies are negligible and we can ignore them: 

Possible: wildtype, 108, 108+51, 108+59, 108+51+59 

Negligible: 51, 59, 51+59 

Analysing 5 haplotypes rather than 8 cuts run time and should hopefully reduce 

confidence interval.  

 

There is a user-defined option to analyse all 8 haplotypes or just the five „valid‟ ones. 

 

 

(v) Precision of the analysis. 

There are user-defined inputs that instruct the programme to estimate the frequencies 

and confidence intervals to a given level of precision (number of decimal points). 

There is a nasty pitfall here for the unwary (I know because I fell into it): it is 

necessary to get a very good estimate of frequencies not to obtain estimates to 10 

decimal points, but because it is essential that the program precisely finds the 

maximum LL value i.e. finds the very top of the „hill‟ of likelihood (Figure 1b). If this 

ML is not precisely measured then its value will be too low and the confidence 

interval (defined as this ML minus 2) will be too wide. I therefore suggest you employ 

the following levels of precision according to the type of analysis: 

 Initial analysis to check the data are processed correctly and no data errors are 

found: set both ML and CI levels of precision to 3 and don‟t believe the 

resulting CI 

 Final analysis of frequencies and CI: set ML precision to 10 and CI to 3. 

 To check hillclimbing always converges on the same set of estimates: set both 

ML and CI levels of precision to 3  

 

Obviously the higher the level of precision the better but there is a penalty to be paid 

in computing time. If the analyses are running very quickly (or you are very patient) 

you could set ML precision to higher levels. 
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3. Running the analysis 
 

(i) Blood sample phenotype data i.e. input files 

 

The data must be in a file called MHFdatafile.txt and it must be in the same directory 

as the program. 

 

At present it CANNOT have more than 5000 patients (array ln_factorial would be 

exceeded). 

 

The data must be in text format with columns separated by spaces 

each patient is represented by a separate row of data 

the following data, and no other, should be present 

first column is phenotype at “codon 1” 

second column is phenotupe at “codon 2” 

third column is phenotype at “codon” 

for these phenotypes: 

 "0" indicates only wildtype is present,  

 "2" mean only mutant are present 

 "1" means heterozygote 

4th colmun is minimum number of clones that you know are in the individual. If you 

do not know MOI enter the minimum i.e. „1‟. 

  

 

So, for example, if the patent has ony wildtype at codon 1, only mutant at codon 2 and 

both types (due to mixed infection)  at codon 3, and it is know (e.g. from 

microsatellite or GLURP genotypes) that the patient contains at  4 clones, then the 

row for that patient will be: 

0 2 1 4 

 

And so on. 

 

Missing data must be coded as 99 and the whole record will be ignored if missing 

data occurs in one of the codons being analsyed 

 

 

To avoid later confusion, I strongly recommend that you keep  the codons in 

numerical order e.g. for dhfr 

Codon 1 is 51 

Codon 2 is 59  

Codon 3 is 108. 

 

If you intend to ignore „impossible‟  dhfr haplotypes (i.e. 51 alone, 59 alone, 51+59) 

then the codons must be in this sequence. 

  

It is probably easiest to keep all the codons in an Excel worksheet, again in numerical 

order e.g. if you have crt genotyped  at codons 76, 163, 220, 271 and 326 then the file 

would have 5 codon columns and a final column for MOI. You probably want extra 

columns to hold information like sample number, origin of sample, date of collection 

and so on. That‟s fine, however you want to organise it. You can then simple select 
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the 4 columns of required data (e.g. for particular location or dates) and cut-and –

paste into the data file. 

 

If haplotypes are defined at only one codon, the data must be in the first column. Data 

in the other two columsn are ignored so can be given any code prvided it is 0,1, or 2. 

 

If haplotypes are defined at two codons, the data must be in the first and second 

columns. Data in the third columns are ignored so can be given any code provided it 

is 0,1, or 2. 

 

 

 

(ii) Programme output. 

 

Programme output should be self-expalanaory. The only conventions to understand 

are: 

 codon genotypes are in square brackets, the first set of brackets corresponding 

to codon 1, second brackets are codon 2 and third brackets are codon 3. 

 For codon genotypes 0=wildtype, 1=mutant 

 For blood phenotypes 0=only wildtype 1= both wildtype and mutant present, 

2= only mutant 

 

So if you were examining dhfr haplotypes and, as suggested codon 1=position 51, 

codon 2=59 and codon 3=108 

 

Haplotype [0][0][0] is wildtype 

Haplotype[0][0][1] is mutant at dhfr108  

Haplotype [1][0][1] is mutant at dhfr51+108 

Haplotype [1][1][1] is mutant at dhfr51+59+108 „triple‟ mutation. 

 

 

This will menable you to interpret the estimated haplotype frequencies e.g. 

Allele[0][0][0] 0.100282 CI 0.053275 to 0.165301 

Allele[0][0][1] 0.036462 CI 0.010825 to 0.083509 

Allele[0][1][0] 0.000004 CI 0.000000 to 0.017582 

Allele[0][1][1] 0.863227 CI 0.791573 to 0.918791 

Allele[1][0][0] 0.000006 CI 0.000000 to 0.017584 

Allele[1][0][1] 0.000009 CI 0.000000 to 0.017587 

Allele[1][1][0] 0.000005 CI 0.000000 to 0.017583 

Allele[1][1][1] 0.000005 CI 0.000000 to 0.017583 

 

So: 

 dhfr haplotype[0][0][0] is wildtype at all codons, and its estimated  freqeuncy 

is 10% with 95%CI from 5% to 17%. 

 The „double‟ mutant haplotype with mutations at positions 59 and 108 is 

encoded [0][1][1] and its estimated frequency is 86% with 95% CI of 79% to 

92%. 

 And so on. 
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Error messages generally report impossible blood sample genotypes and use the 

above code for the genotype e.g. 

 Genotype[0][1][2][1] is a blood sample phenotype which is wildtype at codon 

51, mixed wildtype and mutant at codon 59, is mutant at codon 108, and has 

MOI=1.It is impossible to to have a mixture of wildtype and mutants in a 

single clone infection (i.e. MOI=1) so an error message would be produced 

 

 Genotype[0][0][1][1] is a blood sample which is wildtype at codon 51, 

wildtype at codon 59, mixed wildtypes and mutant at codon 108, and has 

MOI=1. 

 

 

NOTE: Even when a mutation is absent from the data set its frequency will not be 

estimated as zero, rather it will be a very small number e.g. 0.000045 (the confidence 

interval should include zero). Use the first 3 decimal digits, so the appropriate 

estimate is actually 0.000 in this case. Note also that the upper CI limit will not be 

zero because some clones of that haplotype could have been present in the population 

but at such a low frequency that, by chance, they were not represented in the datset.  

[the fact that best estimate is never exactly zero arises because I have avoided any 

estimates of exactly zero because of worries about mathmatical conventions, divisions 

by zero and so on] 

 

 

 

(iii) User-defined input parameters. 

 

The user controls the type of analysis via a series of input parameters. These must be 

contained in a file called MHFparameters.txt which must be in the same directory as 

the program. The structure of MHFinput.txt must be exactly as shown in Figure 2.  
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Figure 2. The structure of MHFparameters.txt 

 

1  ←1,2,3 for number of codons to be analysed; set to 4 if require 3 codon dhfr 

genotype omitting 'impossible' clones 

9  ← level of precision required for ML estimate 

3  ← level of precision required for CI estimation 

8  ← maximum number of clones in any sample 

n  ← (must be y or n) whether  'minority' genotypes will be missed in typing 

0.3  ←the detection limit if minority genotypes are missed e.g. 0.3 means genotypes 

present at frequency less than 30% will be missed…  

n  ←(must be y or n) whether  MOI is known for each sample 

1  ← distribution type to be used if MOI is unknown  

y ← (must be y or n) whether to check hillclimbing always converges on the same 

ML 'peak' 

n  ← (must be y or n) whether to check programme accuracy by simulating datasets 

and checking 95% of estimates fall within the 95% CI 

H <- (must be H or L in uppercase) If a dataset is simulated should it be for a High or 

Low transmission setting 

100 ← required size of dataset for simulations to check programme accuracy 

500 ← number of replicates used to check hillclimbing or programme accuracy 

0    ← a redundant parameter, set to zero. [This allows later programme versions to 

acquire additional information without making previous input files incompatible] 

0    ← a redundant parameter, set to zero. 

0    ← a redundant parameter, set to zero. 

0    ← a redundant parameter, set to zero 

0    ← a redundant parameter, set to zero. 

 

The following inputs must be entered in MHFparameters.txt to control the analysis. 

 

Number of codons to be analysed. 1, 2 or 3 unsurprisingly specifies that haplotypes be 

defined at  1, 2 or 3 codons  respectively. Note that if one codon is specified their 

blood phenotypes  must be encoded in the first column in the input file, if 2 codons 

are specified, the phenotypes must be in the first two columns.  Entering „4‟ will 

obtain the 3 codon haplotypes ignoring the „impossible‟ dhfr genotypes 51 alone, 59 

alone, and 51+59; if you follow this option codon 51 59 and 108 must be in input 

columns 1,2 and 3 respectively. 

 

Level of precision required for ML estimate; „3‟ indicates 3 decimal places, „7‟ 

indicates 7 decimal and so on. This is important, not because it defines the precision 

of estimated frequencies but indirectly because it locates the „peak‟ of maximum 

likelihood. This is discussed in more detail in Section 2 “Decisions required before 

data analysis” of these notes  

 

Maximum number of clones in the samples. The programme runs by considering all 

possible permutation of genotypes in the clones in a sample. As the number of clones 

in the samples increase, the number of permutations grows enormously and the 

programme gets very slow. Set this parameter equal to the maximum number of 

clones observed in the dataset to minimise run times.  
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[I realise the programme could read max MOI from the datafile but I want to keep it 

as an external user-defined input to future proof the programme e.g. if MOI is 

unknown and the program needs to estimate the distribution of MOI.]  

 

Whether ‘minority genotypes’ will be missed. (Must be entered as y or n, in 

lowercase). There is a worry that PCR amplification will miss alleles present at lower 

levels. For example if there are 5 clones in the blood, 4 of which are wildtype and 1 is 

mutant, then the mutant genotype may not be detected. If you think this is a problem 

set this parameter to „y‟ and set the detection limit in the next parameter. 

 

Detection limits for ‘minority clones’. If you specify that minority genotypes will be 

missed (see above) this parameter gives the detection limit below which minority 

clones will be missed. So if it is 0.3, then alleles that constitute less than 30% of the 

parasites in the sample at that locus will not be detected.  

 

Whether MOI is known for each sample. (Must be entered as y or n, in lowercase). 

Self-explanatory provided you know that MOI is multiplicity of infection, also known 

as clonal multiplicity. There is an option to allow the programme to estimate the 

distribution of MOI but I haven‟t tested it (due to a lack of interest). Contact me if you 

want to use this option. 

 

Distribution type for unknown MOI. If MOI is unknown the programme will attempt 

to find (by maximum likelihood) a distribution of MOI that best fits the data. Its 

should be encoded as follows: 0=Negative Binomial, 1=Poisson, 2=conditional 

Poisson. 

 

Whether to check hillclimbing always converges on the same set of estimates. (Must 

be entered as y or n, in lowercase). Explained in the next section i.e. “4. Checking the 

analysis: check you should make”. 

 

Whether to check accuracy of programme. (Must be entered as y or n, in lowercase). 

This simulates a number of datasets (defined according to the previous parameters) to 

check that 95% of estimates do fall within the 95% CI. Explained in the next section 

i.e. “4. Checking the analysis: check you should make”. 

 

If a dataset is simulated should it be for a High or Low transmission setting? For a 

high transmission setting the following frequencies of MOI (multiplicity of infection 

i.e. number of clones per sample) is: 

1=10%, 2=20%, 3=30%, 4=20% 5=15% 6=5%. 

And for Low transmission setting, the following frequencies of MOI are assumed: 

1=60%, 2=35%, 3=5%. 

 

Size of datasets used to check accuracy of programme. Defines the size of simulated 

datasets produced to check the accuracy of the program e.g. if set to 100 the datasets 

will each contain 100 simulated blood samples. 

 

Number of replicates to run when checking hillclimbing or programme accuracy. Self 

explanatory e.g. if set to 500 will either, depending on the parameter values entered 

above,  (i) analyse the field dataset 500 times from randomly selected initial 

conditions (internal programme estimates) to check they converge on the same 
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estimation for haplotype frequencies, or (ii) simulate 500 artificial datasets to check 

that 95% of estimates fall within the 95% CI. 

 

 

 (iv) Errors and Warnings generated from the programme. 

 

A function “check_basic_calculation” runs automatically to check the computer is 

calculating some basic operations correctly e.g. than 0!=1, factorials are accurate etc. 

 

A function “Check_dhfr_haplotypes” can be run to check for „impossible‟ dhfr 

haplotypes. It is believed by many workers that mutations at 51 and 59 cannot occur 

in the absence of a mutation at 108. Consequently haplotypes with mutations at 51 

alone, 59 alone, and 51+59 are impossible. 

This function will run automatically if user has set options that (i) these haplotypes 

are to be ignored and (ii) that minor clones are not missed during genotyping 

 

 

A function “Check_MOI” identifies records where one or more codon(s) are 

heterozygous but multiplicity of infection (MOI) is 1. This is obviously impossible 

because a codon can only be heterozygous if 2 or more clones are present in the blood 

sample. 

This function runs automatically if user has defined that MOI is know 

 

 

How the user decides to correct anomalies identified by these checks is entirely up to 

him/her.  

 

There are various error checks that may flag suspicious events and cause the 

programme to end or to return a ridiculously low LL (e.g. -100000000). The main 

examples are 

 To check that frequencies sum to unity and that individual frequencies do not 

exceed 1 or fall below 0. The programme uses floating point arithmetic so 

there will occasionally be rounding errors that violate these rules and the 

programme will terminate. 

 When calculating CI, the assumed frequencies sometimes fall very close to 

zero and if a haplotype of that type is identified that the programme will state 

that this is highly unlikely and may terminate with a very low LL. 

 

There is an obvious trade off between too many false alarms and programme 

robustness so I have tended to go for the latter. All the messages I have obtained so 

far have been false alarms e.g. “frequencies should sum to 1.0 but programme 

estimates sum as 0.999999”. 

 

If the programme does terminate and the warnings seem like false alarms (e.g. 

rounding errors)  simply run it again; it will start with different random number and it 

should run OK. 
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4. Checking the analysis: checks you should make. 
 

(i) Checking convergence on frequency estimates 

 

In the introduction I briefly noted that the method uses a „hill climbing‟ routine 

(Figure 1B). Imagine a 3D graph where the 2 horizontal axes represent 2 haplotype 

frequencies. The surface plotted on the vertical axis is likelihood but this surface can 

be smooth with only a single peak (like Mount Fuji or Kilimanjaro), or it can be 

jagged with many peaks (imagine the Himalayas or something similar). If the surface 

is smooth and contains only a single LL „peak‟ then the “Hill climbing” always moves 

up the hill and eventually arrive at the same maximum likelihood value irrespective of 

the starting estimates (i.e. the parameters from which we started the hill climb). This 

is the usual case but we cannot exclude the possibility that there are multiple peaks of 

likelihood (i.e. like the Himalayas) and that our “hill climb” just takes us up a little 

hill close to our starting parameters while we ignore the big „peak‟ of LL somewhere 

else in parameter space. These false peaks are rare but I picked up one example in my 

model group of 117 field data sets: a „false‟ peak with a lower LL was reached in 

about 10% of the 1000 re-analyses on this dataset and resulted in quite large 

differences in estimated haplotype frequency (one increasing from 0.37 to 0.5 with a 

corresponding fall from 0.47 to 0.33 in the other main haplotype). 

 

Once the analysis has been obtained it is therefore important to confirm that the 

programme always arrives at the same „peak‟ irrespective of the initial starting 

parameters. There is an option to confirm this by repeating the analysis from, for 

example, 1,000 or 10,000 randomly-generated starting conditions. I suggest you find 

out how long this will take (e.g. by timing a run of 100 repeats) and then work out 

how many you can run over the weekend, or over a week using an unemployed 

laptop. Obviously the larger the number of repeats, the better. Note that this is quicker 

than the full analyses because the programme just checks it arrives at the same „peak‟ 

and need not calculate confidence intervals.  

 

So, it seems good practice to just leave the programme running overnight or the 

weekend checking that it always converges on the same peak.  

 

 

(ii) Checking programme accuracy. 

 

I have included an option in this programme that simulates datasets so that you can 

check they are being analysed properly. This option: 

 Looks at all the user-defined values used in the analysis (number of codons 

investigated, whether minor clones are missed, whether multiplicity of 

infection is known, etc). 

 Generates random frequencies of haplotypes and then simulates a dataset of 

the required type and size noting exactly how many haplotypes of each type 

go into the simulated dataset. This ensures we know the „true‟ haplotype 

frequencies in the simulated dataset. 

 It then invokes the main programme to see how well it estimates the „true‟ 

frequencies and whether the „true‟ values fall within the 95% confidence 

interval. 
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The user can command the programme to do this numerous times (e.g. 1,000) to 

check the programme accuracy: it prints out „true‟ frequency, estimated frequency 

with 95% CI and whether the „true‟ frequency falls within the 95% CI. At the end of 

the process it prints out how often the „true‟ frequencies fall within the 95% CI. 

Obviously if the programme is working well this should happen about 95% of the 

time. In reality 98% to 99% of true frequencies should fall within the 95% CI because 

the approximation used by maximum likelihood to calculate confidence intervals (i.e. 

a drop in 2LL units) is conservative. Remember also not to count two errors in the 

same simulated dataset because the frequencies must sum to one so are not 

independent. In the simple case of 2 alleles, if one frequency lies outside the 95%CI 

then so must the other one to ensure that the two frequencies sum to one. 
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5. Checking the analysis: checks I have made. 
 

All computer programmes (except the most basic) contain bugs, and this one is 

unlikely to be an exception. As is conventional, we recognise this fact then simply 

cross our fingers and hope the bug(s) are not too serious. Checks I have made are as 

follows: 

 

 I analysed 48 datasets to estimate mutation frequencies at single codons. I 

obtained the same results as Tom Smith obtaining independently using the 

Winbugs programme to get Bayesian estimates. 

 

 Several of these datasets had very low frequency of mutations at other codons. 

When I analysed at all three codons the two principle haplotype had very 

similar estimated values to those obtained on the single codon estimate. 

 

 I have simulated various datasets to check that 95% of true frequencies lie 

within the 95% confidence interval. I suggest you do the same when you 

analyse your dataset (i.e. simulate a similar sized dataset to be analysed at the 

required number of codons, see  section 4). 
 

 
Note that I have not checked the analysis when MOI is unknown. This seems fairly 

rare nowdays because microsatellite genotyping is routine. If you do wish to analysis 

a dataset where MOI is unknown I suggest you contact me. 
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6. How to tell if frequencies differ between datasets. 

 
We often want to know whether frequencies observed in different surveys (e.g. from 

the same survey sites taken at different time points or surveys from different 

geographic locations) are „statistically significant‟. The appropriate way of doing this 

is by a Likelihood ratio test (look it up in Wikipedia; their explanation is far clearer 

than anything I could manage). 

 

To do this, first analyse the surveys separately and note the LL excluding the 

multinomial coefficient. Then combine the surveys into a single dataset and re-run the 

analysis; again note the LL excluding the multinomial coefficient. Then add the LL 

from the separate analyses and subtract  the LL of the combined. For example if you 

have two surveys which separately have LL of -20 and -30 while the LL for the 

combined dataset is -53, then your sum will be (-20)+(-30)-(-52) = 3.  

 

Multiplying this sum by two gives a Chi-squared statistic with degrees of freedom 

(df) equivalent to the difference in the number of parameters fitted.  

 

The number of parameters fitted per analysis is the number of frequencies you 

estimated minus 1 (you subtract one because the „last‟ frequency is not really 

estimated: its value is constrained so that total frequencies add up to one). For 

example is you analyse a single codon you estimate two frequencies, mutant and 

wildtype, so you are fitting one parameter (because if mutant frequency is 70% then 

wildtype must be 30%). If you are looking at all 3 codons then there are 8 haplotype 

frequencies so you are estimating 7 parameters. 

 

So in the above example: 

 If analysis was at a single codon then you fit 2 parameters when analysing 

surveys separately and a single parameter in joint analysis so the Chi squared 

statistic is 2x3=6 with  1 df. 

 

 If analysis was at two codons (4 haplotypes) then you fit 6 parameters when 

analysing surveys separately (3 in each analysis) and three parameters in the 

joint analysis so the Chi squared statistic is 2x3=6 with 3 df. 

 

Similarly, if you analyse 3 surveys for the dhfr haplotypes (i.e. excluding the 3 

impossible haplotypes) you are estimating 5 frequencies so using 4 parameters. The 

separate analyses use 3x4=12 parameters while the single combined analysis uses 4 so 

the statistic would have 8df. Assume the LL for the separate analyses were -10, -20, -

30 and for the combined was -72 then the Chi squared would be 2x12=24 with 8df 

 

And so on. 

 

You need to look up a table of Chi-squared to test for significance. 

 
  P 

DF 
  

0.05 0.02 0.01 0.005 0.002 0.001 

1 
  

3.841 5.412 6.635 7.879 9.549 10.828 

2 
  

5.991 7.824 9.210 10.597 12.429 13.815 

3 
  

7.815 9.837 11.345 12.838 14.795 16.266 
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4 
  

9.488 11.668 13.277 14.860 16.924 18.467 

5 
  
11.070 13.388 15.086 16.750 18.907 20.515 

6 
  
12.592 15.033 16.812 18.548 20.791 22.458 

7 
  
14.067 16.622 18.475 20.278 22.601 24.322 

8 
  
15.507 18.168 20.090 21.955 24.352 26.124 

9 
  
16.919 19.679 21.666 23.589 26.056 27.877 

10 
  
18.307 21.161 23.209 25.188 27.722 29.588 

11 
  
19.675 22.618 24.725 26.757 29.354 31.264 

12 
  
21.026 24.054 26.217 28.299 30.957 32.909 

13 
  
22.362 25.472 27.688 29.819 32.535 34.528 

14 
  
23.685 26.873 29.141 31.319 34.091 36.123 

15 
  
24.996 28.260 30.578 32.801 35.628 37.697 

16 
  
26.296 29.633 32.000 34.267 37.146 39.252 

17 
  
27.587 30.995 33.409 35.718 38.648 40.790 

18 
  
28.869 32.346 34.805 37.156 40.136 42.312 

19 
  
30.143 33.687 36.191 38.582 41.610 43.820 

20 
  
31.410 35.020 37.566 39.997 43.072 45.315 

 

So 

The analysis with Chi-squared of 6 and 1df is statistically significant with p<0.02 

The analysis with Chi-squared of 6 and 3df is not statistically significant 

The analysis with Chi-squared of 24 and 8df is statistically significant with p<0.005 

 And so on. 

 

If you get onto the web you can usually find a page that will give you exact „p‟ values 

if you enter the Chi-squered value and d.f. 
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Appendix 1: The MalHaploFreq algorithm. 
 

 

The basic algebraic description for the single locus case is as follows. 

 

The estimate of mutant allele frequency is f. There are three possible phenotypes, θ 

[all wildtype (θ=0), mixed wildtype+mutant (θ=1), all mutant (θ=2)] and numerous 

values of  MOI, µ, and each phenotype has an equation of type 

 

 

      (A1.1) 

 

Where: 

 p(θ,µ) is the probability of observing phenotype θ for any given value of µ. 

c is MOI 

m is the maximum MOI observed in the dataset 

 j is the number of mutant clones in the sample (so that c-j is the number of wildtype 

clones) 

w is an indicator which takes the value 1 if that combination of clones gives rise to 

phenotype θ and c=μ else it takes value 0. 

 

Note that 

(1) The summation over c is redundant because we could simply set c=μ. I have kept 

the redundancy because this is how the computer programme works ie. cycling all 

values of c and all possible  haplotype combinations within c and then using the 

indicator variable w to assign that haplotype combination probability to the 

appropriate phenotype probability p(θ,µ). 

(2) We are not yet working in logs. 

(3) The programme checks that p(0,μ)+p(1,μ)+p(2,μ)=1 i.e. that the probabilities of 

the 3 phenotypes sums to unity within each value of MOI, µ. 

 

We now have the expected probability of each phenotype p(θ,µ) and the number of 

each phenotype n(θ,µ) observed in the dataset. The log likelihood, LL, of obtaining 

the observed dataset is obtained as 

      (A1.2) 

 

Where tµ  is the total number of observations in the dataset with MOI=µ. Note that the 

probabilities of phenotypes sum to unity within each MOI class so the multinomial 

coefficient has to be calculated for each MOI. 

 

 

The summation just serves to incorporate all the possible phenotypes into the 

multinomial probability of observing the dataset. This is best illustrated by 

considering the simple case where MOI can be only 1 or 2, giving 5 phenotypes in 

total (because it is impossible to have a mixed mutant+wildtype infection if MOI=1). 

The probability of observing a given dataset is 
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(Equation A1.3) 

 

Equation A1.2 also considers haplotypes which are not observed in the dataset. They 

make no difference to the LL because n(θ,µ)=0 means the second term in the 

summation is zero and the conventions that 0!=1 and ln(1)=0 mean that the first term 

in the summation is also zero. 

 

 

(A) How the programme calculates LL for any set of guestimates for the parameters 

 

(1) Step 1: calculate the probability of observing each blood sample phenotype 

 

The programme will consider each number of clones (MOI; multiplicity of infection) 

in turn and cycles through all the combinations of the eight haplotypes that can occur 

within that MOI. For example, if there are 5 clones, one possible combination would 

be 3 haplotypes of type [1][1][1] i.e. mutant at all codons 

1 haplotypes of type [0][1][1] i.e. wildtype at codon 1, mutant at codons 2 and 3 

1 haplotype of type [1][1][0] etc 

 

This would give a phenotypes of [1][2][1][5] i.e.wildtype and mutants present at 

codon 1, only mutant at codon 2, wt and mutants present at codon 3, with MOI of 5. 

 

The probability of getting this combination of haplotypes is obtained from the 

multinomial distribution i.e. 

 

zyx 113
1,1,3

5
   where x,y,z are the current guestimates for the frequencies of 

haplotypes [1][1][1], [0][1][1]  and [1][1][0] respectively and the multinomial 

coefficient  

 

!1 !1 !3

!5

1,1,3

5
 

 

 

A running total of probabilities of observing the various possible phenotypes 

combinations is kept stored in an array prob[][][][] where the final index is MOI. 

 

So in the above example 

Prob[1][2][1][5] would be incremented by the solution to Equation 1. 

The reason they are incremented is that different combinations of haplotypes can give 

rise to the same observed phenotype. 

 

If minority clones are missed, this is where the effect is incorporated. In the above 

example, assume clones present at freq less than 0.33 are missed then the phenotype 

[1][2][1][5] would become [2][2][2][5] because the single clones with wildtype at 

codons 1 and 3 are below the detection limit. 
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If MOI is unknown. The programme will go through the above process then move all 

the probabilities back into the array prob indexed as MOI=1. This is achieved by 

weighting the original calculation by the probability of getting that MOI given the 

current estimates of mean MOI (and dispersal coefficient if considering the negative 

binomial). In the above example 

 

If  Prob[1][0][1][5]=0.1 and probability of having MOI=5 is 0.2 then  

     Prob[1][0][1][1] is incremented by 01x0.2 

 

 

At one stage I was considering also using index MOI=2 when MOI is unkown 

because this is the minimum number of clones that are present if one of the codon 

genotypes is heterozygous. On reflection I don‟t think this is necessary because as 

mean MOI increases so will the number of phenotypes with heterozygous codons so I 

think the calculations already make use of this information. 

 

What I have not managed to incorporate is the situation when all the codons being 

considered in the current analysis are homozygous, so it may be that only a single 

clone is present, but it is known that at least two clones are present because a 

phenotype not included in the analysis is known to be heterozygous. This is very 

tricky because the information provided by the second locus would depend on the 

allele frequencies and MOI of infection which both affect the probability of obesrving 

a heterozygote 

 

(2) Step 2: calculate the probability of observing the given dataset 

 

Assume there are: 

 20 patients with MOI=1 among which 15 are [0][0][0], 3 are [0][0][2] and 2 are 

[2][0][2] 

10 patients with MOI=2 among which 5 are [0][0][0], 4 are [0][0][1] and 1 is 

[1][0][1] 

Etc 

 

Then the probability, or likelihood, of observing the dataset is 

 

etc.x   

]2][1][0][1[]2][1][0][0[]2][0][0][0[
1,4,5

10
x    

  ]1][2][0][2[]1][2][0][0[]1][0][0][0[
2,3,15

20

145

2315

probprobprob

probprobprob

   

And so on for each MOI. 

 

If the MOI is unknown then all genotypes are stored assuming  MOI=1 so only the 

first term in the above equation is required 

 

Important: Note that the multinomial coefficient will also contain zeros because each 

possible phenotype is investigated and some will have zero observations. In effect 
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2,3,15

20
   becomes 

....0,0,0,2,3,15

20
 so it is vital that 0!=1 (and that ln(1)=0) to keep 

the calculations correct. 

 

Also some of the power terms may be zero eg prob[0][0][1][3]
0
 so it is vital that any 

number, including zero, raised to the power zero obeys the convention that it equals 

unity. 
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Appendix 2. Alternative algorithm. 
 

This alternative algorithm was suggested by Prof. Tom Smith and Dr. Melissa Penny 

at the Swiss Tropical Institute, Basle. It has the advantage of being algebraically more 

transparent. 

 

[on a technical note they use a different coding for blood phenotypes i.e. 1 is all 

wildtype, 2 is all mutant, 3 is mixed.  Here we stick to the coding used in 

MalHaploFreq i.e. 

1= all wildtype 

2=mixed 

3 is all mutant] 

 

(i) One locus case. 

As in Hill & Babiker (3) and Schneider et al (4). 

 

 wildtype mixed mutant 

Probability P(1) = (1-f)
n 

P(2)=1-P(1)-P(3) P(3)=f
n 

 

Where 

f= frequency of the mutation 

n is multiplicity of infection. 

 

Each of the N samples are then examined in turn using indicator variables: 

 1iW  taking the value 1 where the wild type allele is present, and 0 where it is not.  

1iM   taking the value 1 where the mutant allele is present, and 0 where it is not.  

 

The likelihood associated with the vector of allele frequencies, 1 2( , )x x  is calculated 

using the indicator variables to determine which of the terms is included in the 

product for each sample, i, i.e.: 

 

 

 

Or equivalently, the log likelihood: 

 

 

 

This illustrates the differences between the two algorithms. This Smith and Penny 

approach examines (using an indicator variable) and incorporates each of the N 

observed phenotypes sequentially. The algorithm used in MalHaploFreq is 

fundamentally different. It systematically investigates all possible combinations of 

haplotypes and works out what phenotype would arise from that combination. It keeps 

a running total of the frequency of each phenotype that occurs under the current 

estimates of haplotype frequencies. When all possible combinations have been 
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examined the running total gives the probability of each phenotype. It  then uses the 

multinomial distribution to find the likelihood of observing the phenotypes that occur 

in the dataset. 

 

The MalHaploFreq approach is more cumbersome because it will work out the 

probability of many phenotypes that will not be observed in the dataset but it has two 

distinct advantages 

 Flexibility. The haplotypes may not give rise to the predicted phenotype if 

‘minority’ clones are not detected in genotyping. For example if a person has 

5 clones of which 4 are wildtype and 1 mutant, then the single mutant clones 

may be swamped during genotyping so that the phenotype is scored as ‘pure 

wildtype’. Similarly, if MOI is unknown it is simple to process and merge the 

different MOI classes that may give rise to the same phenotype. 

 Robustness. When 3-locus haplotypes are considered then there are 27 distinct 

blood phenotypes, each of which requires a separate equation under the Smith 

and Penny algorithm. These may become complex (see later) and encoding 

them runs the risk (at least for me) of introducing errors. 

Obviously the two algorithms should give identical results. 

 

(ii) The 2 locus case. 

 

This is conceptually similar to the one locus case. The haplotype frequencies are 

represented as follows: 

  Genotype at second locus 

  Wild type Mutant 

Genotype at first 

locus 

Wild type x11 x12 

Mutant x21 x22 

 

Giving rise to the following phenotype probabilities: 

 

  Phenotype at second locus 

  Wild type Mixed Mutant 

Phenotype 

at first 

locus 

Wild 

type 
 

 

 

Mixed 

 

 

 

Mutant  

 

 

 

Note the algorithm for mixed infections. The sum of frequencies that can give rise to 

mixed infection are raised to the power of MOI. This gives the total probabilities of 

all the combinations of these haplotypes so it is necessary to then subtract those 
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phenotypes that are not mixed. For example P(2,1) is mixed at codon 1 and wildtype 

at codon 2. These can only arise from combinations of haplotypes x11 and x21 and 

(x11+x21)
n
 gives the frequency of all their possible combinations. The frequency of the 

non-mixed phenotypes is then subtracted i.e. x11
n
 (all wildtype at codon 1) and x21

n
 

(all mutant at codon 1) giving  

 

 

(iii) The 3 codon case. 

 The same notation for haplotypes is used as before i.e. an „x‟ with subscripts 

denoting genotype at the three codons so that, for example, x212 is mutant at codons 1 

and 3 and wildtype at codon 2.  

 

As before, the phenotype probabilities are straightforward for samples without mixed 

infections, e.g. the probability of observing only mutant at the first and third loci, and 

wild type at the second is:  

 

When there are mixed infections, the same approach was used as in the two locus case 

i.e. 

 The haplotypes that could contribute to the observed phenotype are identified. 

 They are raised to the power of the MOI to get the total frequency of all 

possible combination of these haplotypes 

 The frequencies of „simpler‟ phenotypes arising from this set of haplotypes are 

then removed (simpler is here defined as containing mixed infections at fewer 

loci than the phenotype in question).    

So, for example, 

 
 

and 

 

 

 

Setting up indicator variables I which take the following values 

1 2 3, ,iI j j j  = 1 if  sample i has phenotype 1 2 3, ,j j j  

1 2 3, ,iI j j j  = 0 otherwise 

allows the log likelihood to be calculated as: 

1 2 3

3 3 3

1 2 3 1 2 3

1 1 1 1

log , , log , ,
N

i i

i j j j

L x I j j j P j j j  

 

where x  is the vector of three locus haplotype frequencies.   
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Appendix 3. The original version of the Smith and Penny algorithm. 
 

[In case I misrepresented it: This is a verbatim record of what TS Emailed to IH. 

Remember their coding is different as explained in Appendix 2.] 

 

Consider initially one locus, and some set of N samples, indexed with i=1,2,..N.  Let 

in  be the MOI of sample i, There are then three possible phenotypes, the probabilities 

of which can be expressed in terms of the allele frequencies of the wild type 1x  and of 

the mutant 2 11x x  as follows (Table 1): 

Table 1.  Phenotypes, one locus case 
 Wild type Mutant Mixture 

Probability 
1(1) in

P x  
2(2) in

P x  
1 2(3) 1 i in n

P x x  

 

Let 1iW  be an indicator variable taking the value 1 where the wild type allele is 

present, and 0 where it is not.  Correspondingly, let 1iM  be an indicator variable 

taking the value 1 where the mutant allele is present, and 0 where it is not.  The vector 

of allele frequencies, 1 2( , )x x  is then estimated by maximizing the likelihood, where 

the weights are used to determine which of the terms is included in the product for 

each sample, i, i.e.: 

1 2 1 1 1 1 1 1

1

, 1 (1) 1 (2) (3)
N

i i i i i i

i

L x x W M P M W P M W P  

Or equivalently, the log likelihood: 

1 2 1 1 1 1 1 1

1

log , log 1 (1) 1 (2) (3)
N

i i i i i i

i

L x x W M P M W P M W P  

Consider now the two locus situation.  There are now four possible haplotypes, with 

frequencies as given in Table 2. 

 

Table 2.  Haplotype frequencies (2 locus case) 
  Genotype at second locus 

  Wild type Mutant 

Genotype at first 

locus 

Wild type x11 x12 

Mutant x21 x22 

 

and the two locus linkage disequilibrium is then measured by :  

11 21 22 12 22D x x x x x , 

This, together with allele frequencies and the constraint 11 21 12 22 1x x x x ,  

uniquely determines the four haplotype frequencies.  Corresponding to these four 

haplotypes, 9 distinct phenotypes can be observed
1
 with the probabilities given in 

Table 3:  

 

Table 3.  Phenotypes, two locus case 
  Phenotype at second locus 

  Wild type Mutant Mixed 

                                                 
1
 For any in greater than 1.  For in equal to 1 the 5 phenotypes with mixed infections should not occur. 
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Phenotyp

e at first 

locus 

Wild 

type 
11(1,1) in

iP x  
12(1,2) in

iP x  

11 12 11 12

(1,3)

i i i

i

n n n

P

x x x x
 

Mutan

t 
21(2,1) in

iP x  
22(2,2) in

iP x  

21 22 21 22

(2,3)

i i i

i

n n n

P

x x x x
 

Mixed 

11 21 11 21

(3,1)

i i i

i

n n n

P

x x x x

 

12 22 12 22

(3,2)

i i i

i

n n n

P

x x x x

 

11 21 11 12

21 22 12 22

(3,3) 1 i i

i i

n n

i

n n

P x x x x

x x x x

 

 

In the three locus case, there are 8 possible haplotypes corresponding to … 

disequilibrium parameters.  The corresponding formulae for the phenotype 

probabilities are straightforward for samples without mixed infections, where all co-

infections have the same haplotype, thus for example, the probability of observing 

only mutant at the first and third loci, and wild type at the second is: 

212(2,1,2) in

iP x  

When there are mixed infections, then the phenotype probability can be resolved into 

two components, (i) the sum of the haplotype frequencies of those candidate 

haplotypes that might contribute to the observed phenotype, raised to the power of the 

MOI.  (ii) the sum of the probabilities for all simpler phenotypes that are compatible 

with this set of haplotypes (simpler is here defined as containing mixed infections at 

fewer loci than the phenotype in question).  The second component is then subtracted 

from the first component.     E.g.: 

211 212 211 212

211 212

(2,1,3)

(2,1,1) (2,1,2)

i i i

i

n n n

i

n

i i

P x x x x

x x P P
 

or: 

211 212 221 222(2,3,3) (2,1,1) (2,1,2)

(2,1,3) (2,2,1) (2,2,2) (2,2,3)

in

i i i

i i i i

P x x x x P P

P P P P
 

 

The log likelihood is then calculated as: 

1 2 3

3 3 3

1 2 3 1 2 3

1 1 1 1

log , , log , ,
N

i i

i j j j

L x I j j j P j j j  

 

where x  is the vector of three locus haplotype frequencies, and the indicator variable, 

1 2 3, ,iI j j j  takes the value 1 if  sample i has phenotype 1 2 3, ,j j j  and zero 

otherwise. 
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Appendix 4. Simple tests to check programme is working 
 

 

Try the simplest case, analysing the following dataset: 

 

0 0 0 1 

0 0 0 1 

2 0 0 1 

2 0 0 1 

2 0 0 1 

 

i.e. 5 samples each with single clone infections of which two are wildtype and three 

are mutant. Obviously the frequency of the wildtype is 0.4 and the mutant is 0.6 

 

The probability of getting this is 

 

 

 

 

The binomial coefficient has value 120/(6x2)= 10 

 

0.4
2
x0.6

3
=0.03456 

 

So overall max LL  is     ln(0.3456) =  -1.0624 

Value of the coefficient is ln(10)=      2.302 

LL excluding coefficient is ln(0.03456)= -3.36 
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Appendix 5. History of programme versions and updates 
 

 

Version 1.1.1 

 Random number generator is now seeded from time rather than a constant. 

This allows users to check for convergence using different machines or 

processors or runs. For example,  to check convergence from 1000 simulations 

could run 500 on different machines (this obviously requires the runs being 

seeded with different random numbers). The programme was seeded 

differently up to version 1.1.0 , i.e. during development, and seeding was a 

„quick fix‟ used to get the programme to run on any machine 

 There was a shortcut in the hillclimb routine that jumped to the next precision 

level when LL was close to maximum (within one unit) this shortcut was 

removed to make the analyse more robust in small sample sizes where a 

change of 1 in LL could be relatively large. A bug was identified and fixed: 

once the programme had broken out of one precision level it broke out of all 

the subsequent ones (the counter was not reset to zero) 

 The best log likelihood is now presented with and without the multinomial 

coefficient. This should allow likelihood ratios to be calculated to check 

whether frequencies differ between samples as described in the main text 

 There was a small bug fix. Previous to this version blank lines at the end of the 

input file would be regarded as repeat records of the last line (the programme 

did not detect end of file in these lines so continued to use the last parameter 

values for each line). The current version has a routine to check length of lines 

and should pick up these problems and print a warning. 

 The routine to simulate datasets to check MalHaploFreq estimates fall within 

95% CI has been updated so it can simulate datasets where minor clones are 

missed during genotyping.  
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