Supplementary Online Material

Summary Equations

The system is described by a set of nonlinear ordinary differential equations of the form:

$$\begin{split} \dot{S}_{dg} &= b_d N - \frac{(1-\rho)\beta S_{dg} \sum_{g \in G} \sum_{d \in D} \sum_{r \in R} (1-c_r) I_{rdg}}{N} + \sum_{r \in R} \left(v_{L,rdg} L_{rdg} + v_{B,rdg} B_{rdg} + v_{I,rdg} I_{rdg} \right) - \mu S_{dg} + \mathbf{Y}_{\mathbf{S}\,d} + f_S(\mathbf{\tau}, \mathbf{S}, \mathbf{L}, \mathbf{B}, \mathbf{I}) \\ \dot{L}_{rdg} &= \frac{(1-\rho)\beta S_{dg} \sum_{g \in G} \sum_{d \in D} (1-c_r) I_{rdg}}{N} - \left(\gamma + v_{L,rdg} + \mu \right) L_{rdg} + \mathbf{Y}_{\mathbf{L}\,d} + f_L(\mathbf{\tau}, \mathbf{S}, \mathbf{L}, \mathbf{B}, \mathbf{I}) \\ \dot{B}_{rdg} &= \gamma L_{rdg} - \left(\sigma + v_{B,rdg} + \mu \right) B_{rdg} + \mathbf{Y}_{\mathbf{B}\,d} + f_B(\mathbf{\tau}, \mathbf{S}, \mathbf{L}, \mathbf{B}, \mathbf{I}) \\ \dot{I}_{rdg} &= \sigma B_{rdg} - \left(v_{I,rdg} + \mu \right) I_{rdg} + \mathbf{Y}_{\mathbf{I}\,d} + f_I(\mathbf{\tau}, \mathbf{S}, \mathbf{L}, \mathbf{B}, \mathbf{I}) \\ \dot{F}_{rdg} &= \sigma B_{rdg} - \left(v_{I,rdg} + \mu \right) I_{rdg} + \mathbf{Y}_{\mathbf{I}\,d} + f_I(\mathbf{\tau}, \mathbf{S}, \mathbf{L}, \mathbf{B}, \mathbf{I}) \\ \dot{F}_{rdg} &= \sigma B_{rdg} - \left(v_{I,rdg} + \mu \right) I_{rdg} + \mathbf{Y}_{\mathbf{I}\,d} + f_I(\mathbf{\tau}, \mathbf{S}, \mathbf{L}, \mathbf{B}, \mathbf{I}) \\ \mathbf{F} \in R = \{none, a, b\}, \quad d \in D = \{none, a, b, ab\}, \quad g \in G = \{0, 1, 2, ...\} \\ \mathbf{b} = (\mu \quad 0 \quad 0 \quad 0) \\ \mathbf{c} = (0 \quad c_s \quad c_s) \end{split}$$

$$X_{none} = \begin{pmatrix} 0 & \frac{1}{x_a} & \frac{1}{x_b - x_a} & 0 \end{pmatrix}$$

$$X_a = \begin{pmatrix} 0 & -\frac{1}{x_a} & 0 & 0 \end{pmatrix}$$

$$\mathbf{S}_{\mathbf{g}} = \begin{pmatrix} S_{none\ g} & S_{a\ g} & S_{b\ g} & S_{ab\ g} \end{pmatrix}$$

$$\mathbf{Y}_{\mathbf{S}\mathbf{d}} = \mathbf{X}_{\mathbf{d}} \bullet \mathbf{S}_{\mathbf{g}}^{T}$$

$$\mathbf{Y}_{\mathbf{L}\mathbf{d}} = \mathbf{X}_{\mathbf{d}} \bullet \mathbf{L}_{\mathbf{rg}}^{T}$$

$$\mathbf{Y}_{\mathbf{L}\mathbf{d}} = \mathbf{X}_{\mathbf{d}} \bullet \mathbf{L}_{\mathbf{rg}}^{T}$$

$$\mathbf{Y}_{\mathbf{L}\mathbf{d}} = \mathbf{X}_{\mathbf{d}} \bullet \mathbf{L}_{\mathbf{rg}}^{T}$$

$$\mathbf{Y}_{\mathbf{L}\mathbf{d}} = \mathbf{X}_{\mathbf{d}} \bullet \mathbf{R}_{\mathbf{rg}}^{T}$$

Artemisinin is represented as *a* and piperaquine as *b* with ACT being *ab*.

The sets R, D and G refer to the categories of resistance, drug activity and intervention strategy respectively. The arrays ν (recovery from infection under the action of the drugs i.e. recovery rates), τ (rate of drug acquisition i.e. treatment rates) and *f* (intervention treatment strategies) depend on the nature of the intervention strategies and combinations of drugs.

The arrays **X** and **Y** define the dynamics of the sequential loss of drug effect where x_a is the duration of ACT treatment plus the time post treatment to sub therapeutic levels of artesunate and x_b is the duration of ACT treatment plus the time post treatment to sub therapeutic levels of the partner drug. *T* represents the transpose function on the associated vector.

This deterministic model was also rewritten as two stochastic models; one population based and another individual based. All three models used the same structure and parameters. The population dynamic stochastic model was a set of difference equations based on the Euler approximation of the corresponding differential equations as the means of a set of Poisson distributions from which the value of each variable was sampled at each time step. For the individual based model, a population of individuals was generated with a list of states which defined the variables of the corresponding deterministic model. The individuals change from one state to another with probabilities defined by the parameters of the corresponding deterministic model apart from the transmission parameter. In this instance, transition from uninfected to blood stage was modeled as the probability of a susceptible individual chosen at random. These two stochastic models produced very similar results and 200 runs of the population based model were used to generate the results given in the paper.

Supplementary tables

Table S1. Assumptions.

	Reasoning for likely effect on		
Assumption	time to eradication if true	Justification for making the assumption	
Likely to <i>increase</i> time to eradication of artesunate resistance*			
		Transmission rates in Western Cambodia	
		are generally much lower than in sub-	
No immunity to malaria	Infection more likely to result in	Saharan Africa, for example [1]. There are	
i.e. transmission rate is	symptoms therefore more people	small focal areas with higher rates and we	
low.	seeking and receiving treatment.	plan to explore this with a spatially	
		heterogeneous model when sufficient data	
		becomes available.	
Low (0 to 5%) survival			
disadvantage (fitness		The relative viability of malaria parasites	
cost) for artesunate	More robust resistant parasites are	with artesunate resistant phenotypes is not	
resistant parasites	harder to eradicate.	known, although survival disadvantage, if it	
compared to drug		exists at all, is likely to be minimal [2].	
sensitive parasites.			
	Those people with resistant	In reality the properties of malaria infections	
No mortality due to	infections are less likely to respond	In reality the proportion of malaria infections	
No mortality due to malaria.	to treatment and therefore more	which are fatal in this region is low, around 0.6% [3]	
	likely to die, thus removing them	0.0 % [0]	
	from the transmitting population.		
Artesunate is the only	Artesunate would be less likely to	Although co-blistered artesunate and	
available effective	cure artemisinin-resistant infections	mefloquine has been the official first-line	
treatment before 2009.	than non-artemisinin drugs, if	drug since 2000, in reality a wide range of	

	available.	treatments is available over the counter in
		Cambodia. The majority receive artesunate
		monotherapy whereas most of the other
		treatments are inadequate (resistant
		parasites/wrong dose/wrong duration) to
		cure infection [4].
Rate of resistance to	If the rote of registerios was stable	
artesunate is increasing	If the rate of resistance was stable	Expert opinion in the absence of historical
exponentially at the time	or decreasing then infection would	data.
of intervention.	be easier to eradicate.	
or intervention.		
Rate of resistance to	If the rate of piperaquine resistance	
	was increasing then piperaquine	Expert opinion in the absence of historical
piperaquine is stable at	would take longer to eradicate	data.
the time of intervention.	infection.	

Likely to decrease time to eradication of artesunate resistance*

No pre-existing	If there are infections resistant to	
resistance to DHA /	ACT then these will be even harder	No evidence for pre-existing resistance to
piperaquine ACT, only	to cure than those with resistance	ACT has ever been found.
to artesunate and		ACT has ever been lound.
piperaquine alone.	to the individual drugs.	
No resistance to	Interventions using these drugs will	
atovaquone, proguanil	have maximal effectiveness if there	Rates of resistance to each of these drugs
or primaquine.	is no resistance.	are thought to be low in this region.
Recombination between	Recombination has the potential to	There is no strong evidence for frequent
drug resistant mutants		recombination combining drug resistance
not frequent enough to	generate parasites resistant to both	mutations in malaria.
have a significant effect	components of ACT.	

in the model timescale.		The genetics of resistance to artemisinins
		and piperaquine are unknown therefore a
		model of this would be conjectural
		If the inheritance of resistance to either of
		these drugs is polygenic, e.g. acquired
		incrementally by the acquisition of a series
		of mutations, then recombination would
		decrease the strength and prevalence of
		resistance.
		This is potentially important for planning
		interventions but it is not known to what
		degree this exists in Western Cambodia.
No spatial heterogeneity		In the absence of data about most spatially
i.e. transmission,	Infection in high transmission areas	heterogeneous parameters we felt their
coverage of	is harder to eradicate therefore	incorporation at this stage was premature.
interventions, access to	taking longer.	
health services, etc.		We are in the ongoing process of gathering
		data to allow the incorporation of realistic
		spatial heterogeneity into the next stage of
		this model.
		To maintain simplicity.
	People do not continue to introduce	
No migration.	new resistant parasites.	In-migration of sensitive infections would
	now resistant parasites.	
		accelerate the elimination of resistance. In-

migration of resistant infections would slow
it. Out-migration of resistant infections
would mean control/elimination efforts
would have to include these areas also in
order to achieve elimination.
As we are modeling containment strategies
for the only area where artesunate
resistance has been identified, Inmigration
of resistant infections is not relevant.

* The first 6 assumptions are all likely to increase the time to eradication of resistance, whereas the other 5 assumptions probably decrease the time to eradication, for the reasons given. Hence this model is probably conservative overall.

Table S2. Parameters. These were based largely on expert opinion of the co-authors and were derived from published data, where available, as stated below. For those parameters for which a range of values is given, this reflects uncertainty of their true value. For these parameters, the underlined values were used to generate the plots and results stated in the text and the ranges were used in the sensitivity analysis.

Symbol	Description	Value	Source	
	Population demographics			
N ₀	Total population size	3.2*10 ⁶	[5]	
μ	Birth rate = death rate	15/1000/year	[6]	
	Prevalence of malaria in population			
р _{ві}	Proportion of population with slide positive	0.074	[1]	
	malaria infection in high transmission			
	season in 2009			
p _{inf}	Proportion of population with infectious blood stage infection at time=0	0.16	(the value required to give pBI ~ 0.074)	
Pa	Proportion of malaria infections that are resistant to artesunate in 2008	0.1	Expert opinion	
p _b	Proportion of malaria infections that are	0.05	Expert opinion	

	Natural history of malaria	a infection	
δ	Natural recovery rate from infection	1/200 - <u>1/60</u> days ⁻¹	[7-12]
Ŷ	Rate of liver stage becoming blood stage	1/5 days ⁻¹	[7-9]
σ	Rate of blood stage becoming gametocytes	1/15 days⁻¹	[13,14]
amp	Amplitude of seasonal variation of transmission	0.67	[15]
	Rates of initiation and proportions of popula		tment
	Artemisinin r		tment
start _a			
	Artemisinin r Year of introduction of artemisinin	nonotherapy	tment Expert opinion [4]
start _a □ = □ _{ai1}	Artemisinin r Year of introduction of artemisinin monotherapy	nonotherapy 1975 1/16 infected people	Expert opinion

adh _a	intervention Proportion of infected population that take full 7 day course of artemisinin monotherapy	0.2	[4]
propRxa	Proportion of infected population that take effective artemisinin monotherapy = propRxam*propa*adha	0.05	= propRx _{am} *prop _a *adh _a
	Interve	entions	
$\square_{ab} = \square_{ab1}$	Rate of starting ACT for treatment	16 infected people per	[4]
= □ _{ab2}		day	
$\Box_1 = \Box_2 = \Box_3$	Rate of reaching maximum coverage for MDA or MSAT	1/0.25 years ⁻¹	Expert opinion
$cov_{i1} = cov_{i2}$ = cov_{i3}	Maximum coverage of MDA or MSAT	0.8	Expert opinion
COV _{ab}	Maximum coverage with ACT after replacement of artemisinin monotherapy	0.6	Expert opinion
P _{sab}	Proportion of vendors selling modern drugs that could sell ACT	0.85	[4]

adh _{ab}	Adherence to 3 day course of ACT =	0.77	[4]
= adh _{vg}	Adherence to 3 days of atovaquone/		
	proguanil		
propRx _{i1}	Proportion that receive full 3 day course of	0.616	= cov _{i1} *adh _{ab}
= propRx _{i2}	MDA/MSAT		or $cov_{i2}^*adh_{vg}$ or
= propRx _{i3}			cov_{i3} *adh _{ab}
p _{ab}	Proportion that receive full 3 day course of	0.3927	=cov _{ab} *p _{sab} *adh _{ab}
Pab	ACT after switch	0.0027	
	Duration of intervention and d	lrug availability	
$dur_1 = dur_2$	Total duration of MDA or MSAT	0 years – long term	Expert opinion
= dur ₃			
n _{i2}	Number of times per year MSAT with	<u>1</u> -4 years ⁻¹	Expert opinion
	atovaquone/proguanil is carried out		
dur_{τ^1}	Duration of each pulse of MDA or MSAT	0.25 years	Expert opinion
= $dur_{\tau 2}$			
= dur _{τ3}			
dur _a	Duration of availability of artemisinin	0 years or long-term	Expert opinion

	monotherapy		
dur _{ab}	Duration of availability of ACT	0 years or long-term	Expert opinion
dur _{bn}	Duration of effectiveness of bed nets	<u>0</u> or 4 years	Expert opinion
	Drug pharmacodyna	nmics	
	Duration of efficacy again	st sensitive parasites (X	ζ)
X _{ao}	Full course of artemisinin monotherapy	7 days	[16]
X _{ai}	Dihydroartemisinin as part of ACT (3 day course)	3 days	[16]
X _b	Piperaquine	<u>20</u> -30 days	[17]
X _v	Atovaquone (as 3 days atovaquone/proguanil)	10- <u>15</u> days	[18]
Xg	Proguanil (as 3 days atovaquone/proguanil)	4 days	[19]
X _p	Primaquine (1 day course)	1 day	[20]
	Rates of clearance of drug sens	itive infection ($ u$) by tre	eatment

C _{Broda}	Artemisinin vs noninfectious blood stage	1/7 days ⁻¹	[21]
C _{Iroda}	Artemisinin vs infectious blood stage	1/4days ⁻¹	Unpublished data from Lee S
CBrodb	Piperaquine vs noninfectious blood stage	1/3 days⁻¹	[22]
Clrodb	Piperaquine vs infectious blood stage	1/21 days ⁻¹	[22]
C _{rodab}	ACT vs any stage	1/7 days ⁻¹ (no synergy assumed) – 1/3 days ⁻¹ (synergy assumed)	[21,23,24]
C _{Ldvg}	Atovaquone/proguanil vs liver stage	1/3 days⁻¹	[25]
C _{Bdvg}	Atovaquone/proguanil vs non-infectious blood stage	1/3 days⁻¹	[18]
C _{Idvg} = C _{Idv}	Atovaquone/proguanil vs infectious blood stage= atovaquone vs infectious blood stage	1/(4.5) days ⁻¹	Unpublished data from Lee S
C _{Ldv}	Atovaquone vs liver stage	1/6 days ⁻¹	[25]
C _{Bdv}	Atovaquone vs non-infectious blood stage	1/3 days⁻¹	[18]

	infection		
C _{Ldp}	Primaquine vs liver stage infection	1/7days ⁻¹	[18]
C _{ldp}	Primaquine vs infectious blood stage infection	1/1 days ⁻¹	[20,26]
	Effect of drug resistance As this is unknown, it was a modeled by mult relative effectiveness against resista	iplying the clearance rate	for each drug by its
pct _{roda}	Parasite clearance time for artemisinin vs sensitive infections	30 hours	[27]
pct _{rada}	Parasite clearance time for artemisinin vs resistant infections	83 hours	[28]
P _{recra}	Proportion of infections resistant to artemisinin that recrudesce after treatment with artemisinin monotherapy	0.35	[28]
ε _{rada}	Relative effectiveness of artemisinin against artemisinin resistant parasites	0.27	= pct _{roda} /pct _{rada} *(1 -p _{recra})
ε _{rbdb}	Relative effectiveness of piperaquine against resistant parasites	0.8	[22]

cost	Fitness cost of drug resistance This was modeled by multiplying the transmission parameter β by (1-cost) [29] for each		
	drug:		
cost _a	Artemisinin	<u>0</u> - 0.1	[2]
cost _b	Piperaquine	<u>0</u> - 0.1	[2]
Effectiveness of bednets			
ρ	Degree of transmission reduction (the product of coverage and efficacy)	0.3	[30,31]

References for Supplementary Online Material

- Incardona S, Vong S, Chiv L, Lim P, Nhem S, Sem R, Khim N, Doung S, Mercereau-Puijalon O, Fandeur T: Large-scale malaria survey in Cambodia: novel insights on species distribution and risk factors. *Malaria J* 2007, 6:37.
- Walliker D, Hunt P, Hamza Babiker H: Fitness of drug-resistant malaria parasites. Acta Trop 2005, 94:251-259.
- Cambodia Health Situation and Trend. World Health Organization Regional Office for the Western Pacific; 2007. [http://www.wpro.who.int/NR/rdonlyres/BED34D62-D904-43B7-9CEC-ADA3CE991459/0/8Cambodia07.pdf]
- Yeung S, Van Damme W, Socheat D, White NJ, Mills A: Access to artemisinin combination therapy for malaria in remote areas of Cambodia. Malaria J 2008, 7:96.

- First revision populations for Cambodia 1998-2020. National Institute of Statistics of Cambodia, Ministry Of Planning; 1998. [http://statsnis.org/projcam/Provinfo_Proj.htm]
- Cambodia Inter-Censal Population Survey. National Institute of Statistics of Cambodia, Ministry Of Planning; 2004. [http://statsnis.org/SURVEYS/depth-cips04/procips/Table3_projection.htm]
- Eyles DE, Young MD: The duration of untreated or inadequately treated
 Plasmodium falciparum infections in the human host. J Natl Malar Soc 1951, 10:327-336.
- 8. Collins WE, Jeffery GM: A retrospective examination of sporozoite- and trophozoiteinduced infections with Plasmodium falciparum: development of parasitologic and clinical immunity during primary infection. *Am J Trop Med Hyg* 1999, **61:**4-19.
- Kitchen SF: Falciparum Malaria. In *Malariology*. Edited by Boyd MF. Philadelphia: W.B. Saunders Co.; 1949:995-1016.
- 10. Franks S, Koram KA, Wagner GE, Tetteh K, McGuinness D: Frequent and persistent, asymptomatic Plasmodium falciparum infections in African infants, characterized by multilocus genotyping. *J Infect Dis* 2001, 183:796-804.
- Bruce MC, Donnelly CA, Packer M, Lagog M, Gobson N: Age- and species-specific duration of infection in asymptomatic malaria infections in Papua New Guinea. *Parasitology* 2000, 121:247-256.
- 12. Babiker HA, Abdel-Muhsin AM, Ranford-Cartwright LC, Satti G, Walliker D: Characteristics of Plasmodium falciparum parasites that survive the lengthy dry season in eastern Sudan where malaria transmission in markedly seasonal. Am J Trop Med Hyg 1998 59:582-590.

- 13. Thompson D: A research into the production, life and death of crescents in malignant tertian malaria, in treated and untreated cases by an enumerative method. Ann Trop Med Parasitol 1911, 5:57-85.
- 14. Jeffrey GM, Eyles DE: Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection. *Am J Trop Med Hyg* 1955, **4:**781-789.
- 15. Ministry of Health National Center for Parasitology, Entomology and Malaria Control, Kingdom of Cambodia: *Annual progress report of the National Center for Parasitology, Entomology and Malaria Control.* Phnom Penh; 2007:26-39.
- 16. White NJ: Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. *Antimicrob Ag Chemother* 1997, **41**:1413-1422.
- 17. Tarning J, Ashley EA, Lindegardh N, Stepniewska K, Phaiphun L, Day NP, McGready R, Ashton M, Nosten F, White NJ: Population pharmacokinetics of piperaquine after two different treatment regimens with dihydroartemisinin-piperaquine in patients with Plasmodium falciparum malaria in Thailand. *Antimicrob Ag Chemother* 2008, 52:1052-1061.
- 18. van Vugt M, Leonardi E, Phaipun L, Slight T, Thway KL, McGready R, Brockman A, Villegas L, Looareesuwan S, White NJ, Nosten F: Treatment of uncomplicated multidrugresistant falciparum malaria with artesunate-atovaquone-proguanil. *Clin Infect Dis* 2002, 35:1498-1504.
- 19. Wattanagoon Y, Taylor RB, Moody RR, Ochekpe NA, Looareesuwan S, White NJ: Single dose pharmacokinetics of proguanil and its metabolites in healthy subjects. *Br J Clin Pharmacol* 1987, 24: 775-780.

- 20. Burges RW, Bray RS: The effect of a single dose of primaquine on the gametocytes, gametogony and sporogony of Laverania falciparum. *Bull World Health Organ* 1961, 24: 451-456.
- International Artemisinin Study Group: Artesunate combinations for treatment of malaria: meta-analysis. Lancet 2004, 363:9-17.
- Chen L, Qu FY, Zhou YC: Field observations on the antimalarial piperaquine. *Chin* Med J 1982, 95:281-286.
- 23. Myinta HY, Ashley EA, Day NJP, Nosten F, White NJ: Efficacy and safety of dihydroartemisinin-piperaquine. *Trans R Soc Trop Med Hyg* 2007, 101:858-866.
- 24. Janssens B, van Herp M, Goubert L, Chan S, Uong S, Nong S, Socheat D, Brockman A, Ashley EA, Van Damme W: A randomized open study to assess the efficacy and tolerability of dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Cambodia. *Trop Med Int Health* 2007, 12:251-259.
- 25. Berman JD, Nielsen R, Chulay JD, Dowler M, Kain KC, Kester KE, Williams J, Whelen AC, Schmuklarsky MJ: Causal prophylactic efficacy of atovaquone-proguanil (Malarone) in a human challenge model. *Trans R Soc Trop Med Hyg* 2001, 95:429-432.
- 26. Rieckman KH, McNamara JV, Kass L, Powell RD: Gametocytocidal and Sportontocidal Effects of Primaquine Upon Two Strains of Plasmodium Falciparum. *Mil Med* 1969, 134:802-819.
- 27. Karbwang J, Na-Bangchang K, Congpoung K, Thanavibul A, Harinasuta T: Pharmacokinetics of oral artesunate in thai patients with uncomplicated falciparum malaria. *Clin Drug Investig* 1998, 15:37-43.

- 28. Dondorp AM, Nosten F, Poravuth, Das D, Phae Phyo A, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Pharath L, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ: Reduced *in-vivo* susceptibility of *Plasmodium falciparum* to artesunate in Western Cambodia. *N Engl J Med*, in press.
- 29. Boni MF, Smith DL, Laxminarayan R: Benefits of using multiple first-line therapies against malaria. *Proc Natl Acad Sci USA* 2008, **105**:14216-14221.
- 30. Dolan G, ter Kuile FO, Jacoutot V, White NJ, Luxemburger C, Malankirii L, Chongsuphajaisiddhi T, Nosten F: Bed nets for the prevention of malaria and anaemia in pregnancy. *Trans R Soc Trop Med Hyg* 1993, 87:620-626.
- 31. Sochantha T, Hewitt S, Nguon C, Okell L, Alexander N, Yeung S, Vannara H, Rowland M, Socheat D: Insecticide-treated bednets for the prevention of Plasmodium falciparum malaria in Cambodia: a cluster-randomized trial. *Trop Med Int Health* 2006, 11:1166-1177.