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The Ross-Macdonald Model We use the following simple version of the

Ross-Macdonald model. The parameters are described in Box #1. For a longer

explanation, see [1].

The change in the PR, the prevalence of infection, is given by the equation:

Ẋ = mabZ(1−X)− rX (1)

The change in the sporozoite rate, the fraction of the mosquitoes with sporozoites

in their salivary glands, is modeled using the equation:

Ż = acX(e−gτ − Z)− gZ (2)

This equation ignores the delays between the time when a mosquito becomes

infected and when it becomes infectious. For these two equations, the basic

reproductive number is:

R0 =
ma2bc

gr
e−gτ (3)

Because the PR changes on the time-scale of about 200 days, and the sporo-

zoite changes quickly, on the time scales of about 10 days, we assume that the

sporozoite rate is approximately at its steady state with respect to the PR:

Z̄ =
acX

g + acX
e−gτ (4)
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We note that the force of infection, denoted h, is defined in these equations to

be:

h = mabZ̄ =
ma2bcX

g + acX
e−gτ = R0r

X

1 + caX/g
(5)

Note that when X is low, then,

h ≈ R0rX (6)

We can substitute this back into Equation 1 and rewrite that equation in the

following way:

Ẋ =
R0rX

1 + csX
(1−X)− rX (7)

where s = a/g is called the stability index, the average number of human bites

per mosquito summed over its entire lifespan. We call this Ross-Macdonald with

a minimal mosquito model.

In the situation that is most interesting to us, we start at the steady state of

Equation 7, and consider the changes in X over time after we reduce transmission

from R0 to RC < 1. When X gets low, this is approximately:

Ẋ ≈ r(RC − 1)X (8)

Note that if a fraction ρ of cases are detected and immediately cured, then RC

counts only the 1− ρ infections that were not appropriately treated.

The Queuing Model We have extended an infinite queuing model for super-

infection originally published and described in detail by Bailey [2]. Parameter

names are explained in Box #1 and other terms are explained in Box #2. These

models consider the dynamics of malaria when a single person simultaneously

carries multiple malaria types; the number of types is called multiplicity of in-

fection (MOI). The equations track the changes in MOI. Conceptually, a new

infection increases the MOI in a single individual from m to m+1, and clearance

reduces it from m+ 1 to m.

Let xm denote the fraction of hosts with an MOI of m, so that
∑∞
m=0 xm = 1.

The parasite rate is X = 1−x0. Let hm denote the force of infection for a person

that is already infected with m types, and let ρm denote the rate that a person
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decrements MOI by one. In an infinite strain model, hm = h, and in finite strain

models, we set hm = h(1 − m/M), where M denotes the maximum number of

strains. Independent clearance implies that ρm = rm. A simple way to model

competition or facilitation is to let ρm = (rm)σ, where clearance rates are faster

than independent for σ > 1, and slower than independent for σ < 1.

The change in the fraction of uninfected hosts is given by the equation:

ẋ0 = −h0x0 + rx1. (9)

Changes in MOI are described by a set of coupled ordinary differential equations:

ẋm = −(hm + ρm)xm + hm−1xm−1 + ρm+1xm+1. (10)

The parasite rate is X = 1− x0.

The dynamics of infection in mosquitoes were, again, simulated using the

minimal mosquito model described in Equation 5.

A special case that we consider here assumes that the potential number of

broods is effectively infinite and that each brood clears independently of the

others: hm = h and ρm = mr. For these assumptions, the distribution of MOI

is Poisson with mean m̄ = h̄/r [2]. At the steady state, the rate that untreated

infections spontaneously clear is h/(eh/r − 1) [3], and note that

lim
h→0

h/(eh/r − 1) = r.

While the clearance approximation makes sense for evaluating steady state rela-

tions, it does not provide a suitable approximation for tracking dynamic changes

in MOI. If the force of infection is suddenly reduced, clearance is determined

by the distribution of MOI from the baseline steady state, and a full dynamical

model is required to simulate changes in the force of infection and the MOI.

Thus, a simpler model for clearance that is similar to the one used during the

Garki project [3] is the following:

Ẋ = h(1−X)− h

eh/r − 1
X (11)
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It has the same steady state as the queuing model:

X̄ = 1− e−h̄/r = 1− e−m̄ (12)

It is not appropriate for modeling endemicity response timelines in hyperendemic

areas following an abrupt reduction in transmission. Following an abrupt decline

in vectorial capacity, h drops, and

lim
h=0

h

eh/r − 1
= r

, so the clearance rate rapidly follows the assumption of the Ross-Macdonald

model.

Multiplicity of Infection and Heterogeneous Biting A queuing model

was also formulated for heterogeneous biting. We have coupled the dynamic

MOI model with a minimal mosquito model and extended it to consider multiple

subpopulations with different biting rates.

Let j subscripts denote a subpopulation with biting weight ωj that comprises

a fraction Wj of the whole population. Let xm,j denote the fraction of that

subpopulation with a given MOI, m. Thus,
∑
m xm,j = 1, for all j. The changes

in the proportion uninfected within the jth population stratum is:

ẋ0,j = −h0x0,j + rx1,j

ẋm,j = −(hj + ρm)xm,j + ρm+1xm+1 + hjxm−1,j;
(13)

The parasite rate is defined to be

X =
∑
j

Wj(1− x0,j). (14)

The probability that a mosquito becomes infected after biting a human, denoted

X̃ and called net infectivity, is given by the formula:

X̃ =
∑
j

cωjWj(1− x0,j). (15)
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As before, the dynamic of infections in mosquitoes is motivated by the equation:

Ż/g = sX̃(e−gτ − Z)− Z (16)

and the entomological inoculation rate (EIR) is the product of the human biting

rate and the sporozoite rate Z̄; it is given by the equation:

E = R0
rX̃

1 + sX̃
(17)

Here, we take X̃ = cx, and we assume that the force of infection is a linear

function of EIR: hj = ωjbE .

We assume that biting weights have a Gamma distribution, a very general

family of distributions, with mean EIR and a squared coefficient of variation of

biting rates given by α. Let P (µ) denote the proportion of the population with

MOI of µ. Under these assumptions, the distribution of MOI at the steady state

is negative binomial (using the R parameterization):

P (µ) ∼ NegBinom
(
n =

1

α
, p =

r

r + bEα

)
. (18)

At the steady state, PfPR is given by the complement of the zero term from the

negative binomial:

X̄(α) = 1−
(

1 +
bEα
r

)−1/α

(19)

Eq. 19 thus defines a two-parameter family of curves: a special case is the Ross-

Macdonald model (for α = 1), although the formulas arise from very different

assumptions. Eq. 12 is by taking the limit as α approaches zero [4].

When no estimate of PfEIR is available it can be inferred from PfPR by

inverting Eq. 19.

E(X̄) =
r

bα

((
1− X̄

)−α
− 1

)
(20)

Obviously, the estimate of PfEIR depends strongly upon on the degree of

biting heterogeneity, α. These equations give us the distribution of MOI at the

baseline, under the assumptions of the model, using the rule:

X̄(α)→ E(α)→ P (µ|α) (21)
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We then choose V to simulate transmission at any controlled reproductive number

RC = bcV (1+α)/r. We define completely interrupted transmission to be RC = 0,

and any value of RC < 1 describes a low-level of transmission that will eventually

lead to elimination. All of these quantitative relations are extremely sensitive to

α, the parameter that describes heterogeneous biting.

PfPR Timelines for Completely Interrupted Transmission Timelines

for the declines in PfPR were defined classically for interrupted transmission by

the formula: x(t) = x(0)e−rt, where r = 1/200 days. The predictions of that

model were generally consistent with surveillance following a successful attack

phase with high household coverage rates with indoor residual spraying at low

endemicity [5].

With superinfection, infections take longer to clear [3, 2] (Figure 1,2). In the

case when transmission is completely interrupted, i.e. when RC = 0, the exact

expressions for the declines in PfPR. For a cohort of people that are all infected

with µ distinct types, which all clear independently, the proportion that would

remain infected over time is given by:

x(µ, t) = 1− (1− e−rt)µ (22)

If the distribution of types in a population is P (µ) at the point in time when

transmission is interrupted, then the PfPR declines over time, according to the

equation: ∑
µ

P (µ)x(µ, t) (23)

When P (µ) has a negative binomial distribution described above.

PfPR Timelines for Low-Level Transmission When transmission is re-

duced, the changes in PfPR are complicated by ongoing transmission, albeit at a

reduced level. As a heuristic, the changing time scales for malaria transmission

occur on a fast time scale for vectorial capacity, and on a slower time scale for

PfPR. In simple terms E ≈ V x, where V denotes vectorial capacity (see Box #2),

so
dE
dt
≈ x

dV

dt
+ V

dx

dt
. (24)
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The changes in V occur on the time scales of mosquito demography, or approx-

imately 10 − 20 days. The changes in PfPR occur on the time-scale of human

infections, or around 200− 700 days, depending on the baseline endemicity (Fig-

ure 1,2).

Changes in PfPR were found by numerically solving the ordinary differential

equations. For numerical simulations, it is necessary to pick a finite number of

biting classes and a maximum MOI.To do this, we established a baseline test

case by comparing the exact solution for different maximum MOI values. Biting

weights were drawn using the following algorithm in R:

biting.wts = function(H, alpha=4.2) {

h = c(1:(H-1))/H

qh = qgamma(h, shape = 1/alpha, scale = alpha)

totbit = function(x,alpha=4.2){

integrand = function(s){

s*dgamma(s, shape = 1/alpha, scale = alpha)}

integrate(integrand, 0, x)$value }

perc = c(0,sapply(qh,totbit,alpha=alpha),1)

diff(perc)*H}

This gives Gamma like biting weights, and when H is large, the variance of the

biting weights converges to α. The default value was taken from [4]. We then

compared this to the median and average of the stochastic simulation with 10,000

individuals, repeated 100 times. When plotted on the same graph, there was no

visible difference between the lines for most values of PfPR up to 75% (Figure

3). The numerical simulations for the ODEs were then calibrated to fit the exact

solution. We found a good correspondence for H = 20 biting classes and for a

maximum MOI of 300.

In all the simulations, the initial conditions were determined by the steady

state, which can be solved analytically for the infinite-strain queuing models with

homogeneous or heterogeneous biting. For the others, the simulations were run

for 200 years, until the differences from the steady state were negligible.

Stochastic Ross-Macdonald Model We also formulated the analogous in-

dividual based model with H individuals, with individual biting weights ωj. The

initial MOI of the jth individual, denoted µj, was drawn from a Poisson distribu-
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tion with mean ωjh0. If µj,t > 0, then we write that the person was infected and

xj,t = 1. Daily changes in MOI and the force of infection were simulated until

the last infected person cleared the last parasite. As before, vectorial capacity

was chosen to match the correct value RC = bcV (1 + α)/r. The algorithm for

simulating changes in MOI over time involved simulating lost infections and new

infections each day, in three steps:

• Loss of infections: for every individual, µj,t′ = Binomial[µj,t, e
−r].

• Force of infection: compute X̃t =
∑
j cωjxj, and ht = V X̃t

1 + sX̃t

.

• New infections: µj,t = µj,t′ + Poisson[ωjh].

This is analogous to the dynamical equations, in the sense that it makes all of

the same assumptions about the underlying process for individual humans.

In the case of homogeneous biting, the stochastic model is much simpler in

that there is a single biting class.

Stage-Structured Infections In stage-structured models, the infections are

subdivided into n distinct classes. Parasites can be lost from each stage at a stage-

specific rate rn, and they would pass from one stage to the next at a different

stage-specific rate qn. This gives a very flexible way of modeling any kind of

structured loss from equations. To simulate stage-structured infections, we note

that it is possible to formulate a deterministic model, but there would need to be

an n−dimensional array of equations, because a person’s infectious state would

be described by the number of parasite types in each stage. For one solution to

this problem, see [6].

Another solution is to set the stage-specific transition rates to 1/rn and then

to assume that parasites all clear after passing from the lst class. This gives

Gamma distributed waiting times, we also simulate individuals, but there are n

distinct stages in an infection, and xj = 1 if µj,n > 1, for any n. The stochastic

algorithm is:

• Advancing stages: for every individual and for all infection stages from

i = 1, 2, . . . , n,

– Qj,i,t = Binomial[µj,i,t, 1− e−rn].
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– µj,i,t′ = µj,i,t −Qj,i,t +Qj,i−1,t

– Note that Qj,n,t infections are lost.

• Force of infection: compute X̃t =
∑
j cxj, and ht = V x̃t

1 + sX̃t

.

• New infections are added at the first stage: µj,1,t = µj,1,t′ + Poisson[ωjh].

Solutions Our findings can be summarized in the following way:

1. For α = 4.2, an exponential model that was fit to the exact solution (i.e.

for completely interrupted transmission), predicted average waiting times

to clear of 400 to 800 days, depending on baseline PfPR (Figure 3).

2. The initial rate of decline was reasonably insensitive to RC for values of RC

less than one (Figure 4). The asymptotic rate of decline was most sensitive

to RC , and this was usually reached when PfPR reached 1%.

3. The initial rate of decline and MOI were most sensitive to α (Figure 5).

Empirical Estimates of Multiplicity of Infection These models consider

the dynamics of malaria when a single person simultaneously carries multiple

malaria phenotypes. This can occur for a variety of reasons such as:

1. One parasite “brood” emerges from the liver before other asexual blood

stage parasite “broods” have cleared.

2. One person is bitten simultaenously by several infectious mosquitoes.

3. Each infectious bite transmits several different phenotypes.

Clearance occurs when none of the offspring of a brood remain.

The number of parasite broods is called the multiplicity of infection (MOI).

The notion of a “brood” has never been given a clear operational definition in

terms of parasite genetics. The problems of defining broods and relating these

to empirical estimates of MOI are complicated by the genetic polymorphisms in

virtually every gene involved with red blood cell invasion by merozoites, and by

var gene expression while the parasite is inside the red blood cell. Thus, except

in the case of selfing, most parasite broods are likely to differ at one or more
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loci. Two genetically identical parasites, moreover, can have different phenotypes.

The relevance of observed genetic diversity remains an open question. Here, we

retain a vague definition of MOI, preferring the traditional notion of the number

of distinct broods to any modern notion of the number of distinct genotypes.

Improving the definition of MOI is beyond the scope of this modeling exercise.
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Box #1: Parameters and Terms

• m: The ratio of mosquitoes to humans.

• g: The instantaneous death rate of adult Anopheles females. The average

lifespan is 1/g, and the probability of surviving one day is p = e−g.

• f : Vector feeding rate. The average duration of the vector feeding cycle

is 1/f .

• Q: Human bloodmeals per bloodmeal

• a: Human feeding rate (a = fQ).

• τ : Number of days to complete sporogony

• c: Efficiency of transmission to mosquitoes, measured at low endemicity.

• b: Efficiency of transmission to humans.

• r: The waiting time to clear a simple, untreated infection, approximately

200 days.

11



Box #2: Malariometric Indices

• s: The stability index (fQ/g)

•
√
α: Coefficient of variation of human exposure. We take α2 = 4.2. In

the numerical simulations, α =
∑
jWj(1− ωj)2.

• h: The force of infection. In these models h = bE .

• X̃: Net human infectiousness, the probability a mosquito becomes in-

fected after biting a human. Here, we use X̃ =
∑
j ωjWj(1− x0,j)

• V : Vectorial capacity. λs2e−gτ .

• E : Entomological inoculation rate, E = V X̃/(1 + sX̃).

• X̄: Standard PfPR at the steady state

• R0: The basic reproductive number, bcV (1 + α)/r, where vectorial ca-

pacity is for a population with no vector control. In the Ross-Macdonald

model, α = 0.

• RC : The controlled reproductive number, bcVC(1+α)/r, where vectorial

capacity is for a population with a fixed level of vector control. In the

Ross-Macdonald model, α = 0.

• MOI: The multiplicity of infection
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Figure 1: a) The expected waiting time to clear an infection, plotted as a function
of MOI. The time lose one infection when MOI is µ is µ/r, and the expected
waiting time to go from µ all the way down to zero is 1/r(1 + 1/2 + 1/3 + . . .+
1/µ). The waiting time is the sum of exponential distributions with different rate
parameters, which does not have a simple closed-form expression. For µ = 100
this is approximately 2.8 years, and for µ = 1, 000 it is approximately 4 years.
b) For the infinite model with heterogeneous biting, we have plotted MOI as a
function of PfPR, c) For the same model, the average waiting time to clear as a
function of baseline PfPR.
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Figure 2: a) The proportion of a cohort that remains infected, starting with the
specified MOI, and b) the proportion of the cohort that clear at a specific point
in time.

13



0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Time (Years)

P
fP

R
393  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

Time (Years)

P
fP

R

437  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

Time (Years)

P
fP

R

481  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

Time (Years)

P
fP

R

531  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Time (Years)

P
fP

R

604  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Time (Years)

P
fP

R
677  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Time (Years)

P
fP

R

779  Days

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Time (Years)

P
fP

R

883  Days

Figure 3: A comparison of the Ross-Macdonald model and a model with hetero-
geneous biting, infinite strains, and independent clearance for RC = 0 for baseline
PfPR ranging from 0.4 up to 0.75. In each frame, an exact solutions with a maxi-
mum MOI of 300 is plotted in solid black, another exact solution with a maximum
MOI of 1,000 is plotted in dashed black, numerical solutions to the ODEs are
plotted in purple, the individual-based model with 10,000 individuals is plotted
in red, green lines mark the the median (solid), 5th and 95th quantiles (dashed)
from 100 realizations of the individual-based model with 1,000 individuals. All
of these solutions lie on top of one another suggesting that the approximations
that are introduced for numerical convenience introduce small and insignificant
errors. The Macdonald model e−t/200 is plotted in blue, and the exponential that
gives the best-fit to the exact solution (by minimizing the sum of squared errors)
is plotted in tan; the best-fit rate is reported on the graph.
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Figure 4: The decline in PfPR is insensensitive to RC initially, and only begins
to make a difference as PfPR approaches zero. This set of simulations uses
the infinite strain model with independent clearance and heterogeneous biting.
The colors represent RC = 0 (black), 0.5 (blue), 0.8 (purple), 0.95 (red), and 1
(orange). The time to reach 5% differs by at most two years.
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Figure 5: For the model with heterogeneous biting, infinite strains, and indepen-
dent clearance. The rate of decline is sensitive to α, the index of biting disparity.
For the same starting PfPR, the baseline MOI increases with α. The values here
are α = 6 (red), α = 4.2 (grey), α = 2 (blue), α = 1, and the GMEP model
(yellow).
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