Step 1: Find Best model

Best model is defined as the model with the smallest AIC or RSS_{shared} among fitted models, where appropriate.

Step 2: Identify *possibly convex* models

Possibly convex models are quadratic or cubic models with negative concavity somewhere over the time domain.

Step 3: If model is NOT possibly convex:

 $K = -b_1$; $t_{lag} = 0$; GO TO **Step 5**

Step 4: If model is possibly convex

- 4.1 For each log-parasitaemia predicted by the *Best* model y_i (but excluding any measured zero parasitaemias), calculate slope S_i between this point and the preceding predicted value
- 4.2 Find the most negative slope, Smax
- 4.3 Calculate normalised slopes Sn = S / Smax
- 4.4 Find clearance rate constant using the chart below

- 1. Fit linear regression to *Best* model predicted log-parasitaemias with Sn>1/5
- 2. Clearance rate = slope of the linear fit
- 3. t_{lag} = time of the last measurements with Sn negative or <1/5