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Abstract

This file contains three sections of discussions to supplement the main text. The first section has a brief
introduction to matrix and vector notation for those unfamiliar to such notation. (Use of this notation
allows a concise representation of the system of differential equations used by this report.) The second
section gives the full set of differential equation system for the model, and gives the values or the range
of values of the parameters used. The third section argues why it is plausible that host antibodies to
the immature gametocytes would reduce the overall mature gametocyte-days to a greater degree that
antibodies directly against the mature gametocytes.

A Note on Vector and Matrix Notation

Vector and matrix notation came from linear algebra, which is concerned with solving linear systems of
equations:

N∑
j=1

Ai,jxj = bi, where 1 < i ≤ N, and 1 < j ≤ N. (1)

Here the A and b factors are known quantities, and the x are unknowns to be determined. This report is
not directly concerned about such systems of equations, and in fact, the systems of ordinary differential
equations used for this report are highly non-linear in the population variables since the populations
of parasite and host cells interact with each other. (For those interested in solving systems of equation
such as 1, there are many outstanding textbooks on linear algebra. The book by Press, Teukolsky, et al.
referenced in the main text gives details on numerical algorithms which solve linear algebraic systems as
well as additional references.) Nonetheless, vector and matrix notation allows the theoretical population
biology equations of dynamics to be represented in a compact, concise manner.

An N ×M matrix A is defined as a rectangular array of numbers with N rows and M columns. The
component at the intersection of row i and column j is labeled as Ai,j . Matrix addition and multiplication
are defined as follows: if two matrices A and B are N ×M , then C = A+B is an N ×M matrix such that

Ci,j = Ai,j +Bi,j , 1 < i ≤ N, and 1 < j ≤M. (2)



2

If matrix A is N × P and matrix B is P ×M , then C = AB is an N ×M matrix such that

Ci,j =

P∑
k=1

Ai,k ×Bk,j , 1 < i ≤ N, and 1 < j ≤M. (3)

A special class of matrices are N × 1 arrays, called vectors in this report. Usually, the components of a
vector are labelled just by the corresponding row, and the column number is dropped, since there is only
one column. An N × 1 vector is said to have length N . The system of equations 1 above can be written
in a compact vector-matrix notation:

Ax = b (4)

Here, the factors Ai,j are the components of N ×N matrix A, the factors xi are the components of vector
x of length N , and the bi are the components of vector b of length N .

The system of differential equations used to model the population
dynamics in this report

Equation 1 in the main text can be represented in vector-matrix format. One can think of the Pn as the
components of a vector P which has length N ; in a sense, this vector contains the information about the
population. In addition to P , define another vector δ(n), also of length N , which has all zero components
except that the nth component is 1. Define NXN matrix D which has all zero components, except that
Di,i = −Di,i−1 = 1. Then equation 1 in main text becomes

P ′ = s(t) δ(1)− ΛDP (5)

When discussing interactions between populations, the following symbols are convenient: (1) g(x) =
greatest integer in x, (2) Θ(x) = 1 if x > 0, 0 otherwise, (3) L(P ) = PN , the last component, and (4)

T (P ) =
∑N
n=1 Pn, the total population. Note that L and T can be thought as operators that act upon

vector P and return properties of the population.

System of equations for asexual parasite population dynamics

This discussion complements the subsection “Model for asexual parasite population dynamics” in the
Methods section of the main text. As mentioned in the main text, five morphologically distinct popu-
lations of asexual parasite cells where considered: (1) ring stage, (2) early trophozoites, (3) late tropho-
zoites, (4) schizonts, and (5) merozoites. Let RS, ET , LT , and Sc be vectors of the compartments
associated with populations 1-4 respectively. The total intracellular asexual density Asx is then Asx
= T (RS) + T (ET ) + T (LT ) + T (Sc). Since population (5), has a duration Dµ of just 0.1 hour, just
one compartment was used for it dynamics, with µ, and take σµ = Dµ. Let t be the time since start of
primary release of merozoites from the liver into the blood. Then dynamics of the asexual population are
described by the following set of equations:

RS′ = (1− rΘ(Asx−AsxSx)) ζ V µ δ1 − (χInn + ΛAsx)DRS

where ΛAsx = NAsxD
−1
Asx, NAsx = g(D2

Asxσ
−2
Asx)

ET ′ = ΛAsx L(RS) δ1 − (χInn + ΛAsx)DET

LT ′ = ΛAsx L(ET ) δ1 − (χInn + ΛAsx)DLT

Sc′ = ΛAsx L(LT ) δ1 − (χInn + χSc,Ab + ΛAsx)DSc

µ′ = κΘ(tPR − t) + pΛAsx L(Sc)− (ζ V +D−1µ )µ (6)
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Here V is the density of vulnerable erythrocytes (reticulocytes only for P. vivax, all red blood cells for P.
falciparam), ζ is the binding affinity of merozoites to their target blood cell population, r is the proportion
of new intracellular parasites which are committed to sexual development once Asx exceeds the trigger
level AsxSx, (assumed to be 0.01µL−1), and p is the number of merozoites released per bursting schizont
after asexual division is completed within the schizont. The term κΘ(tPR − t) accounts for primary
release of merozoites from the liver. As explained in the main text, κ = 0.002(µLhr)−1 and tPR = 1hr so
that 104 merozoites are quickly released into an adult human with blood volume 5×106µL. The quantity
χInn is the rate that the model innate response form the host clears the four intracellular stages. For
simplicity, it is assumed for this report that the main antibody response is against the schizont stage
with time-dependent clearance rate χSch,Ab.

System of equations for population dynamics of sexual forms

This discussion complements the subsection “Model for population dynamics of sexual forms” in the
Methods section of the main text. As mentioned in the main text, two very different models of gametocy-
togenesis, the “cryptic sexual” (CS) model and the “non-cryptic sexual” (non-CS) model were considered.
The equations which govern the dynamics of the CS model are stated. The ring stage, early trophozoites,
late trophozoites, schizonts, and merozoites each have cryptic sexual counterparts. For each simulation,
it was assumed that the values corresponding to DAsx, σAsx, NAsx, Dµ, p, and ζ are the same as for
the asexual populations. Let cRS, cET , cLT , and cSc be vectors of the compartments associated
with intracellular cryptic sexual stages that correspond to RS, ET , LT , and Sc respectively. Let cµ
be the cryptic merozoite density. Let IG be the vector of compartments associated with the immature
gametocytes. As mentioned in the main text, gametocyte duration for P. falciparum was taken as DIG

= 216hr, σIG = 24hr, and for P. vivax, DIG = 72hr, σIG = 12hr. For simplicity, the mature gametocyte
population were represented with a single compartment, MG, with exponential decay, DMG = σMG =
156hr. It was assumed that the cryptic sexual forms are subject to the same innate clearance rate χInn
and antibody clearance rate χSc,Ab. The equations that determine the dynamics for the CS model are as
follows:

cRS′ = rΘ(Asx−AsxSx) ζ V µδ1 − (χInn + ΛAsx)D cRS

cET ′ = ΛAsx L(cRS) δ1 − (χInn + ΛAsx)D cET

cLT ′ = ΛAsx L(cET ) δ1 − (χInn + ΛAsx)D cLT

cSc′ = ΛAsx L(cLT ) δ1 − (χInn + χSc,Ab + ΛAsx)DSc

cµ′ = p V ΛIS cScNIS
− (ζ V +D−1µ ) cµ

IG′ = ζ cµ V − (χIG,Inn + χIG,Ab + ΛIG)D IG

where ΛIG = NIGD
−1
IG,

and NIG = D2
IG σ

−2
IG = 81, for P. falciparum, 36 for P. vivax

MG′ = ΛIG IGNIG
− (χMG,Inn + χMG,Ab +D−1MG)MG (7)

Here χIG,Inn and χIG,Ab are the clearance rate of the innate and antibody immune responses, respectively,
upon the immature gametocytes, and χMG,Inn and χMG,Ab are the corresponding rates for the mature
gametocytes. As mentioned in the main text, for a subset of simulations χIG,Inn = χMG,Inn = 0, (that
is, gametocytes invisible to innate immunity), while for all other simulations, χIG,Inn = χMG,Inn = χInn.

The equations that determine the dynamics for the Non-CS model are as follows:

IG′ = rΘ(Asx−AsxSx) ζ V µ− (χIG,Inn + χIG,Ab + ΛIG)D IG

MG′ = ΛIG L(IG)− (χMG,Inn + χMG,Ab +D−1MG)MG (8)

Here, ΛIG is defined as in equation 7 above in this supplement file.
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System of equations for red blood cell dynamics

This discussion complements the subsection “Model for red blood cell dynamics” in the Methods section
of the main text. Three populations were used to describe the red blood cells: (1) reticulocytes, the
youngest of the erythrocytes, (2) mature red blood cells, and (3) senescent red blood cells ready to be
removed by phagocytosis in the spleen, liver or bone marrow. The vectors of the compartments associated
with populations 1-3 are Re, Ma,and Se respectively. Based on hematological studies referenced in the
main text, the respective durations of the stages were DRe = 36hr (with σRe = 6hr),), DMa = 2796hr
(with σMa = 148hr), and DSe = 48hr (with σSe = 12hr). Letting E be the rate of production of new
reticulocytes from the bone marrow, the dynamics of the red blood cells are described by the following
set of equations:

Re′ = E δ1 − (ζRe µ + ΛRe)DRe

Ma′ = ΛReL(Re) δ1 − (ζMa µ + ΛMa)DMa

Se′ = ΛMaL(Ma) δ1 − (ζSe µ+ ΛSe)DSe

where ΛRe = NReD
−1
Re , NRe = D2

Re σ
−2
Re = 36,

ΛMa = NMaD
−1
Ma, NMa = g(D2

Ma σ
−2
Ma) = 356,

and ΛSe = NSeD
−1
Se , NSe = g(D2

Se σ
−2
Se ) = 16. (9)

If the parasite is P. vivax, ζMa = ζSe = 0, ζRe = ζ as defined in equation 6 above in this supplemental
file. For P. falciparum, ζMa = ζSe = ζRe = ζ as defined in equation 6 above.

The rate of erythropoiesis, E , has its own dynamics. Let E0 be the rate that the erythropoietic system
in a healthy human can make new erythrocytes so that the blood density is maintained at 5× 106µl−1,
(or ≈ 1736 (µl hr)−1). Define the total red blood cell density ET = T (Re) + T (Ma) + T (Se). For
conciseness, define ∆E = E − E0. The dynamic model for the erythrocyte source is given by

∆E ′ =

{
−λES(∆E + E′T + δDys ζ µ V ) : −E′T − δDys ζ µ V < ∆EMX

λES(∆EMX −∆E) : −E′T − δDys ζ µ V > ∆EMX

where ∆EMX = 4× E0 and λ−1ES = 48hr. (10)

(Here V is the same as in equation 6 above.) If δDys = 0, then the rate of production of reticulocytes
would increase (up to 5× E0) in response to blood loss (E′T < 0). The term δDys ζ µ V is a simple model
to account for dyserythropoiesis due to the parasites.

System of equations for immune response dynamics

This discussion complements the subsection“Model for immune response dynamics” in the Methods
section of the main text. As stated in the main text, an actuator-attacker model was used for the
immune response: the actuator is triggered when the density of a target is above some threshold, and
the attacker is a factor that attempts to remove the target. The model immune responses incorporated
feed-back for self-amplification then for self-limiting.

In the CS model of gametocytogenesis, dynamics of the host innate immune response are set by

A′Inn = FBA FBK
(
Θ(µ+ cµ− µTh) aInnAInn + λAInn

AInn,0
)
− λAInn

AInn
χ′Inn = FBK λAInn

(AInn −AInn,0)− λχInn
χInn

where λ−1AInn
= 1hr, λ−1χInn

= 2hr,

FBA =
(
1− (AInn −AInn,0) ∆A−1Inn,Mx

)
Θ(∆AInn,MX −AInn +AInn,0),

and FBK =
(
1− χInn χ−1Inn,Mx

)
Θ(χInn,Mx − χInn). (11)
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The self-amplification parameter aInn is taken to have value 10, and the background actuator level AInn,0
is taken as 0.1µl−1. The FB factors enforce self-limiting feedback. As mentioned in the main text, the
limit on growth of the actuator is set by parameter ∆AInn,Mx = 10µl−1. The limit on growth of the
attacker is set by maximum clearance rate χInn,Mx, and was also varied from simulation to simulation.
The threshold density of merozoites that triggers this response is µTh which is also varied from simulation
to simulation. (For the non-CS model simulations, Θ(µ+ cµ−µTh) in equation 11 above is replaced with
Θ(µ− µTh).)

The model antibody responses incorporate an addition component, the delay stage (as shown in Figure
1 of main text). Let G be the vector consisting of the components of the delay stage, and let AAb,Tar
and χAb,Tar be the actuator and attacker phases, respectively, of an antibody response against a targeted
stage Tar. For the delay stage, its duration was taken as DG = 96hr with σG = 9.6hr. The dynamics
for each of the antibody responses are determined by the following system:

A′Ab,Tar = FBA FBK
(
Θ(Tar − TarTh) aAbAAb,Tar + λAAb

AAb,0
)
− λAAb

AAb,Tar
G′ = λAAb

Θ(AAb,Tar −AAb,0)
(
AAb,Tar −AAb,0

)
δ1 − ΛG DG

χ′Ab,Tar = FBK λG L(G)− λχAb,Tar
χAb,Tar

where λG = NGD
−1
G NG = D2

G σ
−2
G = 100, λ−1AAb

= 1hr,

FBA =
(
1− (AAb,Tar −AAb,0) ∆A−1Ab,MX

)
Θ(∆AAb,MX −AAb,Tar +AAb,0),

and FBK =
(
1− χAb,Tar χ−1Ab,Tar,Mx

)
Θ(χAb,Tar,Mx − χAb,Tar). (12)

For all antibody responses modeled, the self-amplification parameter aAb = 1, the background actuator
level ASc,Ab,0 = 0.1µl−1, and ∆AAb,MX = 10µl−1. Tar is the density of the target of the response, and
TarTh is the threshold density that triggers the response. As mentioned in the main text, all simulations
have an antibody response against schizonts (and crypto-sexual schizonts in the CS model). Some will
have a response against mature gametocytes and some against immature gametocytes. The parameters
µTh and χInn,Mx in equation 11, and TarTh and χAb,Tar,Mx from equation 12 are varied from simulation
to simulation.

How Antibodies to Immature Gametocytes Affect the Density of
Mature Gametocytes

In the main text it is stated, “Antibodies against immature gametoctyes tend to be more effective in
reducing the density of transmissible gametocytes than antibodies directly against the transmissible
forms.” Although the models of host immune dynamics are complicated (and real immune reactions
are even more complicated), on can understand this result by using a simple calculation: let g0 be
the number of immature gametocytes created during a burst of parasitemia. Assume that an immune
response would attack this population with a constant removal rate χK until it reaches maturity. Then
the size of this cohort decreases exponentially until maturity is reached. After maturity the population
decays exponentially with time constant DMG. The contribution of the cohort to PDMG is

δPDMG = g0 exp(−DIGχK)

∫ ∞
0

exp(−t/DMG)dt

= g0 exp(−DIGχK)DMG

= g0 exp(−9days× χK)× 6.5days for P. falciparum,

= g0 exp(−3days× χK)× 6.5days for P. vivax. (13)



6

On the other hand, if the cohort of immature gametocytes are not affected by host immune responses,
but then are exposed to an immune response with a constant killing rate χK after reaching maturity, the
contribution to PDMG is

δPDMG = g0

∫ ∞
0

exp(−t× (D−1MG + χK)dt

= g0 ×DMG

(
1 +DMG × χK

)−1
= g0 × 6.5days

(
1 + 6.5days× χK

)−1
(14)

Thus the ratio rχ of δPDMG calculated assuming that only immature gametocytes are attacked by an
immune response with killing rate χK to δPDMG calculated assuming that only mature gametocytes are
attacked with a killing rate of the same strength is

rχ = exp(−9daysχK)
(

1 + 6.5days× χK
)

for P. falciparum,

= exp(−3daysχK)
(

1 + 6.5days× χK
)

for P. vivax. (15)

Figure S12 shows the value of this ratio as a function of χK for infections with either P. falciparum or P.
vivax. It can be seen that rχ is rapidly suppressed below one as χK grows, especially for P. falciparum
infection. Although the clearance rate of the immune responses of the models discussed in the main text
are not constant, nonetheless one can see that the mature gametocyte population, especially that of P.
falciparum, would be very sensitive to immune pressures on the immature gametocytes.
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Figure S12: Plot of Ratio of Immune Suppression rχ versus Immune Clearance Rate χK
Note: a clearance rate of 0.05hr−1 corresponds to 1.2day−1.
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Tables

Table S1 - Parameters varied from simulation to simulation

Abbreviations: Sc: schizont, IG : immature gametocyte, MG : mature gametocyte, IG Ab+(-) antibodies
to immature gametocytes present (absent), MG Ab+(-): antibodies to mature gametocytes present
(absent).

Parameter Equation where used Range in values Model Class
log(σAsx × hr−1) 6 log(0.3) – log(5.9) All

δDys 10 0 – 10 All
log(µTh × µL) 11 log(10−5) – log(10) All

log(χInn,Mx × hr) 11 log(0.05) – log(50) All
log(ScTh × µL) 12 log(10−5) – log(10) All

log(χAb,Sc,Mx × hr) 12 log(0.05) – log(50) All
λχAb,Sc

12 168hr – 8760hr All
log(IGTh × µL) 12 log(10−5) – log(10) IG Ab+, MG Ab-

log(χAb,IG,Mx × hr) 12 log(0.05) – log(50) IG Ab+, MG Ab-
λχAb,IG

12 168hr – 8760hr IG Ab+, MG Ab-
log(MGTh × µL) 12 log(10−5) – log(10) IG Ab-, MG Ab+

log(χAb,MG,Mx × hr) 12 log(0.05) – log(50) IG Ab-, MG Ab+
λχAb,MG

12 168hr – 8760hr IG Ab-, MG Ab+


