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Additional file 2. Model based geostatistical framework for generating maps of 

dhps540E prevalence 

 

The full details of the methodology for the spatio-temporal prediction of the 

dhps540E molecular marker prevalence are presented here. The model was developed 

using a model-based geostatistics (MBG) framework [1] and the parameters were 

estimated using Bayesian inference and Markov Chain Monte Carlo (MCMC) 

simulation [2].  

Employing	  a	  Bayesian	  MBG	  approach	  offers	  several	  advantages.	  The	  classical	  

geostatistical	  framework	  allows	  for	  spatial	  prediction	  [1,	  3],	  while	  the	  

generalized	  linear	  modelling	  permits	  flexibility	  in	  the	  response	  variable	  being	  

modelled	  [4].	  The	  Bayesian	  nature	  of	  the	  methodology	  allows	  parameter	  

estimation	  and	  quantification	  of	  the	  uncertainty	  [3,	  5]. 

A2.1 Geostatistical model 

Joint probability model for dhps540E markers 

A schematic representation of the full model is given in Figure A2.1.  The number of 

individuals in the study, conducted at location in year , that were positive for 

the dhps540E marker ( ) was assumed to be binomially distributed, given the 

number of individuals tested in the study ( ) and the probability P(xi ,ti ) : 

  Ni
+ Ni , P(xi ,ti ) ~ Binomial(Ni , P(xi ,ti )) . 

 

The probability, P(x,t) , at an arbitrary location and time , was modeled as the 

inverse logit transformation of the sum of a random field, f (x,t) , and an unstructured 

random component, ε(x,t) : 

 

P(x,t)= logit−1( f (x,t)+ ε(x,t)) .  
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The unstructured components, ε(x,t) , were assumed to be independent and 

identically distributed with zero mean and variance  

 

  ε(x,t) V ~ N (0,V ) . 

 

The random field, f (x,t) , was modeled as a stationary Gaussian process, with mean 

function µ(x,t)  and covariance function C(x,t) : 

 

  f (x,t) θ M ,θ C ~ GP(µ( x,t),C(x,t)) , 

 

where and are vectors of parameters that specify the mean and covariance 

function, respectively. Specifically, it was assumed that the mean function varies 

linearly in time and with malaria transmission intensity 

 

µ(x,t) = β0 + β1t + β2m(x,t), (1)  

 

where θ M = {β0,β1,β2} . The covariance function was chosen to be a version of the 

spatio-temporal structure advocated by Stein [6] and adopted previously by Hay et al. 

[7] and Gething et al. [8]. The covariance between a study conducted at location in 

year , and a study performed at in year  was given by 

C(xi ,ti , x j ,t j ) =σ
2γ (0)

Δxγ (Δt )κγ (Δt )(Δx)
2γ (Δt )−1Γ(γ (Δt)+1)

(2)
 

where  is the gamma function, is the modified Bessel function of the second 

kind of order , Δt = ti − t j  and  

 

γ (Δt) = (2ρ + 2(1− ρ)e−Δt /φt )−1 . 

 

The distance was given by  
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Δx =
2 γ (Δt)DGC (xi , x j )

φx
 

 

where DGCGC (xi , x j ) is the great circle distance between locations  and .  In the 

notation adopted here, the parameter refers to the temporal scale factor,  to the 

temporal limiting correlation, to the partial sill and to the spatial range.  The 

covariance parameters were: θ C = {φt ,ρ,σ ,φxt} . 

 

The joint probability model for the dhps540E observations, the structured and 

unstructured components, given the model parameters, the space-time location of the 

data and the sample sizes was therefore given by  

  

p(N + , f ,ε N , X ,t,θ M ,θ C ,V ) = p(Ni
+ f (xi ,ti ),ε(xi ,ti ), Ni ,xi ,ti ) p(ε(xi ,ti ) V ) ⋅

i=1

n

∏
p( f ( X ,t) θ M ,θ C , X ,t)

 

where N + ,N ,X and t are the augmented set of positive dhps540E responses, number 

of samples tested, location and time of the study, respectively, for the set of studies. 

That is, for example,  

  

N + = [N1
+ , N2

+ ,..., Ni
+ ,..., Nn

+ ]
X = [x1,x2 ,...,xi ,...,xn]

 

 

Inclusion of the dhps437G and dhps581G markers 

To incorporate the information contained within the dhps437G and dhps581G marker 

data into the model framework outlined in the previous section, factor potentials were 

introduced that multiply the joint probability model [9, 10]. Essentially, the presence 

of dhps437G or dhps581G data at a location without dhps540E data placed an upper 

(dhps437G) or lower (dhps581G) constraint on the predictive dhps540E prevalence 

allowed by the model. 



 4 

For a space-time location (xk ,t k )  that was not associated with a dhps540E 

observation, but was associated with dhps437G data ( of the samples are 

positive for the dhps437G marker), the likelihood, given the random field and 

unstructured random component was modified: 

  
I(N437

+ , N437 ) p(Ni
+ f (xi ,ti ),ε(xi ,ti ), Ni ,xi ,ti )

i

n

∏  

where I(N437
+ ,N437 )  is an indicator function such that 

 

I(N437
+ ,N437 ) =

1,
0,

⎧
⎨
⎪

⎩⎪

if P(xk ,tk ) ≤ N437
+ / N437

otherwise
 

whereP(xk ,tk ) = logit
−1( f (xk ,tk )+ ε(xk ,tk ))  is the predicted model prevalence of the 

dhps540E marker at location and time . A separate factor potential (and hence 

indicator function) was used for each space-time location where dhps437G data was 

available but dhps540E data was not.  

 

In a similar fashion, dhps581G data (N581
+ ,N581) at a space-time location (xk ,t k )was 

incorporated into the model by multiplying the likelihood by the indicator function  

I(N581
+ ,N581) =

1,
0,

⎧
⎨
⎪

⎩⎪

if P(xk ,tk ) ≥ N581
+ / N581

otherwise
 

Prior specification 

Priors were specified for the mean and covariance parameters 

{θ M ,θ C ,V} = {β0,β1,β2,φt ,ρ,σ ,φx ,V} . The logarithm of the partial sill ( ) and the 

spatial range ( ) were assigned skew-normal priors: 

 

 

 

The temporal scale ( ) was given a relatively vague prior 

 

  φt ~ Exponential(0.1).  
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The temporal limiting correlation ( ) was assigned a uniform prior  

 

 ρ ~ Uniform(0,1).  

 

Noninformative priors were specified for the regression coefficients in the mean 

function of the Gaussian process 

 

p(β0,β1,β2 )∝1 . 

 

The inverse of the variance of the unstructured random component (1/V ) was 

assigned a diffuse Gamma prior with mean 0.25 

 

 

A2.2 Implementation 

The implementation of the model proceeds with two main steps: inference and 

prediction, as detailed below.  

 

Parameters estimation (inference stage) 

In the parameter estimation stage, the output of the MBG model was the posterior 

probability distribution of the model parameters, given the observed data. Samples 

were drawn from the posterior distribution of the model mean and covariance 

parameters (  θ M ,θ C ,V ) and the random field ( f (xi ,ti ) ) at each location where 

dhps540E, 437G or 581G data was available, using a MCMC approach. The MCMC 

algorithm was implemented in the Python [11] package PyMC [12]. PyMC is an 

open-source Python module that implements Bayesian statistical models and fitting 

algorithms, including MCMC.  
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The mean and covariance parameters (  θ M ,θ C ,V ) were updated jointly within the 

MCMC algorithm using Metropolis steps while the values of the space-time random 

field at the data locations and times were updated using Gibbs steps. The unstructured 

random components (ε(xi ,ti ) ) were updated separately using Metropolis steps. 

 

Spatio-temporal mapping (prediction stage) 

In the prediction stage, the output was the posterior distribution of the prevalence of 

the dhps540E marker at each space-time point of predictive interest (here each 

location on a 25 x 25 km grid in sub-Saharan Africa from 1990-2010). From the 

output of the inference stage, parameter values were available for the sample

{β0
j ,β1

j ,β2
j ,φt

j ,ρ j ,σ j ,φx
j ,V j} ,   j = 1,...,m and for f j (xi ,ti ) ,  j = 1,...,m for each of the 

data locations (  i = 1,...,n ). Here, the number of data locations ( ) was the number of 

locations where either dhps540E, 437G or 581G data was available.  

To generate a predictive map for 2010, for each of the samples (  j = 1,...,m ), for each 

of the prediction locations on a 25 x 25 km grid (  k = 1,...,T ) of sub-Saharan Africa, 

the conditional distribution of the random field, f j (xk ,2010) , was sampled from a 

multivariable Normal distribution with mean and covariance matrix given, 

respectively, by 

  

µ j (xk ,2010)+C j ( X ,t,xk ,2010)T C j ( X ,t, X ,t)−1( f j ( X ,t)− µ j ( X ,t)) and
C j (xk ,2010,xk ,2010)−C j ( X ,t,xk ,2010)T C j ( X ,t, X ,t)−1C j ( X ,t,xk ,2010),

 

where µ j (xk ,2010) and C j (xk ,2010, xk ,2010)  are scalar quantities of the mean 

function value (Eq 1) and the covariance function value (Eq 2) in 2010 at , 

respectively, f j (X,t) , µ j (X,t)  and C j (X,t, xk ,2010) are vectors of length of the 

random field,  mean function and covariance function values at the data locations: 

  

µ j ( X ,t) = [µ j (x1,t1),...,µ j (xn ,tn )], f j ( X ,t) = [ f j (x1,t1),..., f j (xn ,tn )],

C j ( X ,t,xk ,2010) = [C j (x1,t1,xk ,2010),...,C j (xn ,tn ,xk ,2010)]
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and is an  by  matrix with elements 

C j (X,t,X,t)r ,p = C
j (xr ,tr x p ,t p )r ,p . The subscript denotes that the quantity was 

evaluated with the sample from the posterior distribution. 

 

To this f j (xk ,2010)  sample, the unstructured component (drawn from 

  ε
j (xk ,2010) ~ Normal(0,V j ) ) was added. Finally, applying an inverse logit 

transformation gave the sample from the posterior distribution for the dhps540E 

prevalence at location in 2010. Repeating this for each of the  samples formed 

the set of dhps540E prevalence samples at in 2010: 

  {p j (xk ,2010), j = 1,...,m}.  

The point estimate of dhps540E at in 2010 was defined as the median of this set. 

Repeating for each prediction location on a 25 x 25 km grid resulted in a median map 

of dhps540E prevalence in 2010. The predictive procedure can be repeated for any 

year of interest.  An associated uncertainty map accompanies the median maps 

presented in the main text. The uncertainty at each prediction location was the sample 

standard deviation from the set   {p j (xk ,2010), j = 1,...,m} . Note that the higher the 

standard deviation, the higher the uncertainty in the distribution of the prevalence of 

dhps540E. 

 

A2.3 Transmission intensity 

The Malaria Atlas Project (MAP) has developed spatio-temporal MBG frameworks to 

generate world P. falciparum endemicity maps, the most recent of which was created 

for 2010 [8]. The computational demands to generate predictive P. falciparum maps 

at each year from 1990-2010 are substantial under the current MAP framework. In 
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this model, only the spatial predictions for 2010 were included in the mean function 

of the Gaussian process. That is; 

µ(x,t) = β0 + β1t + β2m(x,2010)  

In this way, the P. falciparum transmission was incorporated into the model as a 

mechanism for how the prevalence of dhps540E changes spatially.  
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Figure A2.1. Representation of the dhps540E probability model in a directed 

acyclic graph. Here arrows indicate conditional dependencies. The brown, grey, 

green and blue ovals represent model parameters, data input (variables that have been 

observed), covariates and predictive surfaces, respectively. The dhps437G and the 

dhps581G constaints are represented by the grey rectangles.  

 

 

 

 


