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Details of calibration setup 

Because of the interactions between the human and vector systems in the EMOD model, 

broad variations in human immune dynamics induce variations in the transmission conditions.  

This presents a difficulty in the calibration process, as the target distributions are age-specific 

prevalence and incidence curves determined at measured EIRs.  It is computationally expensive 

to adjust vector populations at each tested set of intrahost parameters to compare results at equal 

transmission levels. To remove this complication, the measured transmission conditions were 

reproduced by removing vectors from the simulation entirely, and instead subjecting the 

simulated individuals to periodic sporozoite challenge at a known intensity. The frequency of 

challenge is varied monthly to mimic seasonal variation in EIR (Table 1 presents these arrays of 

monthly EIRs). This setup allows for consistent comparison of simulated prevalence and 

incidence outputs at different sets of intrahost model parameters, without the expense of the 

“nuisance dimensions” induced by human-vector feedback.   

Seasonal variations in EIR were taken from the literature where available. When 

unavailable, seasonal variation was set through simulation with appropriate climate data, or 

assumed to be similar to published values for nearby sites; Table 1 lists the sources for each site 

studied.  Both [1] and [2] characterize their study regions primarily using falciparum parasite 

prevalence in 1-9 or 2-10 year olds rather than EIR.  Seasonal variations at these sites were 

assumed to be similar to published measurements in nearby settings.  Simulations were then run 

to characterize the annual average PfPR2-10 as a function of the annual EIR given the assumed 

seasonal variations. The annual EIR values used in calibration were interpolated to reproduce the 



measured PfPR2-10 in the data sources.   As the target data are averaged on timescales of a year or 

longer, the seasonality in EIR is expected to be a second-order effect in the calibration compared 

to the overall magnitude of the EIR.  

These two choices of simulation architecture (direct sporozoite challenge vs. vector-

mediated transmission, and cohort-tracking rather than population sampling) were made to 

reduce the runtime of individual simulations and the total number of simulations required for the 

calibration.  Calibrating individual immune system parameters under these conditions does carry 

the implicit assumptions that both herd effects and human-vector system dynamics are negligible 

in the context of this calibration, i.e., that the model outputs will be similar in a full population 

experiencing vector transmission at the appropriate intensity.  Tests of these assumptions have 

indicated that the mean behavior is well preserved, but that full population simulations exhibit 

increased variance in outputs, most prominently under very low transmission conditions. 

When data was taken from a population receiving no or limited antimalarial 

interventions, the simulations initialize a single population of individuals at age 0, and track 

prevalence and incidence in this population as they age under repeated malaria exposure.  Births 

are not modeled in this cohort-tracking setup.  A different setup is required when age-targeted 

antimalarial interventions were present, as the immune systems of older individuals evolved in 

the absence of these interventions.  For these simulations, births are enabled, and an age-targeted 

intervention is distributed after the simulation has run sufficiently long to burn in the adult 

population immune characteristics.  Simulation setups are summarized in Table 1. 

Model details – maternal antibodies and severe disease 

 



The EMOD model has multiple means of accounting for maternal antibodies; the most 

detailed is to assign each birth to an individual mother and base the new infant’s maternal 

antibody protection on the mother’s prior exposure.  In this cohort-tracking setup, this option is 

not available; infants are instead assigned a constant level of maternal antibody protection at 

birth, and the degree of this protection is based on the local transmission conditions.  A set of 

simulations was run after the prevalence/incidence calibration to determine the average fraction 

of PfEMP1 variants that individuals in the population of potential mothers (defined here as 

females aged 14-45) have experienced.  The results were fit to a rational function, and the final 

fitted function is:  

𝟎. 𝟗 ∗ (𝟐. 𝟓 ∗ 𝟏𝟎−𝟓 𝑬𝑰𝑹𝟐 + 𝟎. 𝟑𝟓 ∗ 𝑬𝑰𝑹)

𝟐 + 𝟎. 𝟑𝟓 ∗ 𝑬𝑰𝑹
 

The output is plotted in Figure S1.  This maternal antibody protection is provided at birth, and 

decays at a rate of 1% daily (half-life of approximately 10 weeks). Maternal antibodies act in 

concert with PfEMP1 and nonspecific antibodies to kill infected red blood cells in the model. 

The calibration of maternal antibody levels calibrates an overall scalar on the total maternal 

antibody protection; the functional form is not varied in calibration. 

 



 

Figure S1: EIR dependence of the average fraction of antigenic variants experienced by potential mothers in the simulated 
population. This quantity defines the degree of maternal antibody protection provided to infants at the beginning of a 
simulation, when simulations are run in “cohort-tracking” mode with no births modeled. 

 The functions translating RBC counts, asexual parasite densities and fever levels to 

probabilities of diagnosis are sigmoid (logistic) functions characterized by a width and a 

midpoint.  The functional form is: 

𝑃(𝑥) =
1

1 + 𝑒
𝑘(1−

𝑥
𝑥0

)
 

Where k represents the inverse width, and x0 is the threshold, at which the probability is equal to 

0.5.  Figure S2 presents the behavior of these functions for the fever levels (left) and 

parasitaemias (right), using 1000 random samples of values for the midpoints and widths from 

the preferred region post-calibration.  The functions are binned in the x-dimension (temperature 

or parasite density), and the median and 68/95/100% quantiles of the probability at a given x are 

plotted and shaded in y.  In the preferred parameter space post-calibration, the probability of 

experiencing a severe cerebral malaria episode is essentially zero for low-grade fevers, but 

increases rapidly as the fever crosses approximately 40.5
o
C (base body temperature is assumed 

to be 37
o
C).  Similarly, a severe disease episode caused by hyperparasitaemia is highly unlikely 



at parasitaemias below approximately 200,000 per µl, rapidly increasing to a probability of 1 in 

most samples by approximately 400,000 per µl.  
 

 

Figure S2: (Left) Sigmoid functions describing the probability of being diagnosed with severe malaria as a function of current 
body temperature. (Right) Sigmoid functions describing the probability of being diagnosed with severe malaria as a function 
of current parasitaemia. Sigmoid curves are computed using a random sampling of parameters within the acceptable volume 
post-calibration. The dashed line represents the median, and the blue-shaded regions represent the 68/95/100% quantiles of 
the posterior curves (median/quantiles computed within bins in the X dimension). 

Likelihood functions 

 The likelihood of a set of model parameter values θ given the target outcomes d is, by 

definition, the probability of observing the outcome data d given the parameter vector θ; that is:  

ℒ(𝜃|𝑑) = 𝑃(𝑑|𝜃) 

Given the complex nature of the model, exact evaluation of the likelihood function is infeasible, 

and thus approximations to the true likelihood are utilized in the importance sampling algorithm.  

To perform this approximation, each dataset targeted by the calibration is assumed to follow a 

simple appropriate distribution – prevalence outcomes are treated as binomial variables, 

incidence outcomes as Poisson variables. The simulation outcomes are used to constrain the 

hyperparameters of a corresponding conjugate prior (beta and gamma priors on binomial and 



Poisson parameters, respectively).   The likelihood of observing the data is then approximated by 

the posterior predictive distribution describing new observations given the simulated outcomes.  

As an illustrative example, the likelihood for a set of calibration parameters θ given 

binomial prevalence data d (consisting of kd parasite-positive observations out of nd total 

observations) is approximated as follows.  The simulation outputs ks,  ns  are used to update an 

initially uniform beta prior to provide a simulation-informed posterior distribution:  

𝐵𝑒𝑡𝑎(𝑝|1, 1) → 𝐵𝑒𝑡𝑎(𝑝|1 + 𝑘𝑠, 1 + 𝑛𝑠 − 𝑘𝑠) 

The likelihood is then approximated using the posterior predictive distribution, computed 

by marginalizing over the binomial parameter:     

𝑃(𝑑|𝜃) =  ∫ 𝑃(𝑑|𝑝)𝑃(𝑝|𝜃)𝑑𝑝 = ∫ 𝐵𝑖𝑛(𝑘𝑑|𝑛𝑑 , 𝑝)𝐵𝑒𝑡𝑎(𝑝|𝛼, 𝛽) 𝑑𝑝 =  𝐵𝑒𝑡𝑎𝐵𝑖𝑛(𝑘𝑑|𝑛𝑑, 𝛼, 𝛽)  

Where (𝛼, 𝛽) = (1 + 𝑘𝑠, 1 + 𝑛𝑠 − 𝑘𝑠). Approximate likelihood functions for Poisson incidence 

data with a gamma prior are obtained in a similar fashion.  Each age bin in each region is treated 

as an independent measurement, and the final likelihood is the product of likelihoods over all of 

the age bins and regions.  

Certain assumptions are implied by this definition of the likelihood function.  Points in 

each age bin are not truly independent at a given θ, but this approximate likelihood ignores 

correlations across age bins. However, treating the age bins as independent is sufficient to obtain 

generally good fits; the mechanistic nature of the model appears to induce the appropriate 

correlations in favored regions of parameter space.  Also, describing the data using binomial and 

Poisson distributions presumes a lack of underlying heterogeneity at the individual level (beyond 



heterogeneity induced by stochasticity). Investigation of the data on a disaggregated basis may 

reveal overdispersion due to individual heterogeneity, but this heterogeneity is not investigated 

here. 

Prevalence/incidence calibration 

A subset of the available malaria model parameters deemed most likely to exert the 

dominant effects on the population-level prevalence and incidence measurements were included 

in calibration, while the remaining parameters were held fixed at values that were calibrated by 

hand to other data sources. This set of fixed parameters includes all of the antibody 

level/capacity growth rates, whose effects are much more readily calibrated to time courses of 

individual infections.  The antibody memory levels had been hand-calibrated and were excluded 

here. Finally the strength of antibody response to the major pfEMP1 variants was calibrated on 

time courses of parasitemia in naïve individuals and excluded here; the strengths of antibody 

responses to antigens with less population variance are expected to have larger effects on long-

term immunity after repeated exposure and are included.  The final set of included parameters 

are the number of antigenic variants in each of the three immune compartments, the strengths of 

antibodies against the MSP1 antigens and shared minor epitopes, and switching rate between 

PfEMP1 antigenic variants in a single infection.  

A summary of the results of the calibration exercise are presented in Figure S3. The 

calibration was performed over 6 dimensions, and show the log-likelihood values (color) 

collapsed onto 3 different 2-dimensional spaces (# of PfEMP1 variants and switching rate, # of 

MSP1 variants and MSP1 antigenicity, # of nonspecific types and nonspecific antigenicity).  The 

log-likelihood values are truncated at the low end, to prevent excessive compression of the color 



scale in the region of high likelihood. The parameter sets that pass the acceptance threshold are 

highlighted in red, and the convex hull enclosing all of these parameter sets is outlined in black 

dashed lines.  The increased sampling near the highest likelihood regions is a desired 

consequence of the iterative IMIS calibration algorithm.  Because 4 dimensions are collapsed for 

the images, this convex hull in each 2-d slice also encloses a number of poorly-matching 

simulations; these generally indicate poor parameter values in one or more of the other 

dimensions.  Collapsing the 6D space onto two dimensions for presentation hides covariances in 

the other dimensions, but the 2D planes shown here represent the dominant interactions between 

the parameters.   

 

Figure S3: Summary of results of prevalence/clinical incidence calibration. The sampled points, collapsed onto 

2 dimensional spaces are shown and colored by log-likelihood.  Points passing the log-likelihood threshold are 

highlighted in red, and the projection of the convex hull onto the 2-D space is outlines in black. 

The calibrated region of unique PfEMP variants and antigenic switching rate contains the 

values of these parameters that have been preferred in previous work  [3, 4], though the allowed 

range of antigenic switching rates is rather broad, and previous work on infection durations 

provides stronger constraints. The contrast between the MSP and cross-reactive immune 

compartments is also interesting; the preferred region restricts the MSP compartment to have few 



variants that are effectively targeted by the antibody response, while the cross-reactive 

compartment is allowed a larger number of variants with a relatively weak antibody response.   

 

 

Severe disease calibration 

The classification of a severe malaria incident in the model is complicated by the 

plurality of potential manifestations of malaria that can result in a diagnosis of severe malaria.  

The likelihood function employed predominantly targets the absolute incidence of severe 

disease, but also features a couple of Gaussian penalty terms that aim to keep the fractions of 

anemic, cerebral, and other severe disease near the observed values.    

Because the cohort is initialized, rather than born to specific mothers, maternal antibodies 

are not directly transmitted in these simulations. To mimic the effect of maternal antibodies, an 

EIR-dependent initial immunity is conferred to the cohort on day 0, and calibration is performed 

on the overall scaling of this immunity.   

Results are presented in Figure S4 in a fashion similar to the results of the 

prevalence/incidence calibration.  The three figures present scatter plots of the log-likelihood 

collapsed onto 2 dimensions, with the figures in the left column showing all simulated points on 

a color scale; parameter sets passing the acceptance threshold are outlined in red, and a black 

dashed line depicts the 2-D convex hull of all acceptable parameter sets.  The convex hull does 

not do a good job capturing the somewhat concave relationship between the threshold and 



inverse width of the parasitaemia sigmoid parameters.  Importance sampling can be used within 

the convex hull to ameliorate this issue.   

 

Figure S4: Summary of results of severe disease incidence calibration.  The sampled points, collapsed onto 2 

dimensional spaces are shown and colored by log-likelihood.  Points passing the log-likelihood threshold are 

highlighted in red, and the projection of the convex hull onto the 2-D space is outlines in black. 

 

Out-of-sample validation of calibration results 

 The one-hundred and seventy model parameter samples used to evaluate vaccine efficacy 

were also utilized to check the performance of the calibration results against out-of-sample data.  

Only the baseline (no-vaccine) runs of the simulation were included; runs in which vaccine 

distribution was simulated are obviously unsuitable for validation purposes. Data were obtained 

from three sources [5][6][7], which each treat a dataset compiled from a number of sources.  

 Figure S5 presents a comparison of data and calibrated model predictions of PfPR<15 vs. 

annual EIR.  The data points are obtained from Figure 1a of [5] and shown with the best model 

fit presented in that work.  The data and fit extend to annual EIR values both below and above 

those simulated in the present work.  Within the bounds of EIRs treated in this work (1-300), the 

median model outputs are not in disagreement with the observed data.  However, the uncertainty 



on the calibrated model outputs, particularly at annual EIRs below 10, does not capture the 

degree of variation observed in the data.  This result is not unexpected; the model treats the 

population as homogenous in both immune system dynamics and acquisition risk. The data are 

drawn from a number of underlying studies, which also introduces additional heterogeneities; as 

noted by the authors of [5], different studies used different age ranges to define PfPR and 

different methods of estimating the annual EIR. 

 

Figure S5: Comparison of model predictions of PfPR in children under 15 vs. EIR, against data outside of the 

calibration sample.  The dashed blue line indicates the median model prediction, while the shaded regions 

present 68/95/100% quantiles of the simulation outputs. The black points represent data from a number of 

field studies, compiled together in [5].  The red line indicates the best fit model proposed by the authors.   

 Figure S6 presents the calibrated model predictions for the age profile of clinical 

incidence under six different broadly defined transmission categories, as presented in [6], along 

with the best fits presented in Figure 2 of that work.  The three columns represent low (EIR<10), 

moderate (10<EIR<100), and high (EIR>100) transmission intensities, and the two rows separate 

low and high seasonality in transmission (where high seasonality, or “marked seasonality” in the 

source paper, is defined as ≥75% of episodes being concentrated in ≤6 months of the year).  The 

absolute incidence rates are normalized away, so that all curves sum to 100%.  As EIR increases, 

the model qualitatively captures the increase in the fraction of incidents experienced early in life, 



though not quite to the degree of the fits.  The effect of seasonality is also not as marked in the 

model as in the fits; the calibrations were performed with data aggregated on 1-year age bins, 

which may smooth away the effects of seasonality in calibration. Modelling seasonal variations 

in incidence is a target of ongoing calibration work.   

 

Figure S6: Model predictions of the age profile of clinical incidence in children under 10, along with the best 

fits obtained in [6].  The dashed blue line indicates the median model prediction, while the shaded regions 

present 68/95/100% quantiles of the simulation outputs; the black lines represent the best fits presented in the 

source paper.  The absolute incidence rate is normalized out, so that all curves sum to 100%. 

 

 

 

Figure S7 presents the calibrated model predictions for the age profile of severe malaria 

incidence from the model against hospital admission rates presented in [6], along with the best 

fits presented in that work.  The 6 panels are analogous to those in Figure S6, and absolute rates 

are again normalized out. The low-intensity, low-seasonality panel does not contain a fit for 

hospital admission rates in the source paper, but the model results are included for completeness.  

The model predictions exhibit good agreement with the fits in [6], with the exception of the high-



seasonality, moderate-intensity panel; the fit in the source indicates that increased seasonality 

shifts the burden to older age bins, and this effect is not present in the model outputs. 

  

Figure S7: Model predictions of the age profile of severe incidence in children under 10, along with the best 

fits obtained in [6].  The dashed blue line indicates the median model prediction, while the shaded regions 

present 68/95/100% quantiles of the simulation outputs; the black lines represent the best fits presented in the 

source paper.  The absolute incidence rate is normalized out, so that all curves sum to 100%. 

 Finally, Figure S8 presents model predictions of the all-age incidence (per 1000 people 

per year) vs. PfPR2-10 as presented in [7] (Figure 6 in that work).  The data extends to prevalence 

levels lower than those simulated in this work, but the model and data are not in disagreement at 

the prevalence levels available in both.  The median model prediction is higher than the median 

of the posterior distribution of the prevalence-incidence relationship obtained in [7].  A potential 

reason for this disagreement is that, as noted in the main text, the simulations performed for the 

vaccine evaluation do not track individuals for their entire lifetime; as incidence rates tend to 

decline in older age groups, the presented incidence rates are likely biased upward from what 

full-lifetime simulations would predict.  Furthermore, as mentioned in the main text, the studies 

used for calibration employed active case detection 3 times per week, and higher frequency of 

case detection visits has been shown to produce higher estimates of incidence [8, 9]; this effect 

may also bias the present calibration towards higher incidence rates. 



 

 

Figure S8: Model predictions of the all-age incidence (per 1000 people per year) vs. PfPR2-10 as presented in 

[7].  The dashed blue line indicates the median model prediction, while the shaded regions present 

68/95/100% quantiles of the simulation outputs. The median of the posterior distribution obtained in [7] is 

presented in black, with data shown as red points.   

Model parameter sampling 

To evaluate model dependence on the effects of a pre-erythrocytic vaccine, 170 models 

are resampled using the results of the calibration procedure.  Both of the 6-dimensional 

calibration steps are finalized by defining a set of “acceptable” points using an application of 

Wilk’s theorem, taking the maximal likelihood to be the null hypothesis: 

2 log ℒ(�⃗�) > 2 max (log ℒ({�⃗�})) −  𝐹−1(0.9) 

Where 𝐹−1(𝑘, 𝑥) is the inverse CDF of the 𝜒2 distribution with 𝑘 degrees of freedom.  The �⃗� 

satisfying this criterion are then used to construct a convex hull, and the enclosed parameter 

space volume is considered to be the set of well-calibrated parameter sets.  Being defined by a 

limited number of points in a high-dimensional space, the hull almost certainly encloses 

parameter sets that would fail the above criterion – this can be ameliorated by employing 

importance sampling from points within the volume.  However, the ensemble model vaccine 



evaluation employs uniform sampling of the interior of the convex hull, to provide a broader 

exploration of predicted vaccine performance within this parameter space volume.  

Table 1: Description of simulation setups for calibration 

Region Monthly EIRs  Source for 

EIR 

Interventions Population 

Matsari  

(prevalence) 

68 *[0.02, 0.05, 0.10, 0.15, 0.21, 0.20, 

0.16, 0.08, 0.02, 0.00, 0.00, 0.01] 

Simulation None Cohort of 100 

Namawala 

(prevalence) 

329* [0.13, 0.21, 0.08, 0.14, 0.15, 0.08, 

0.04, 0.03, 0.03, 0.01, 0.04, 0.05]  

[10] None Same as above 

Rafin Marke 

(prevalence) 

18*[0.03, 0.06, 0.09, 0.14, 0.18, 0.18, 

0.15, 0.10, 0.03, 0.01, 0.01, 0.02] 

Simulation None Same as above 

Sugungum 

(prevalence) 

132*[0.02, 0.05, 0.10, 0.15, 0.21, 0.20, 

0.16, 0.08, 0.02, 0.00, 0.00, 0.01] 

Simulation None Same as above 

Dielmo 

(incidence) 

200*[0.07, 0.08, 0.04, 0.02, 0.03, 0.04, 

0.22, 0.13, 0.18, 0.09, 0.07, 0.05] 

[11] Upon fever, 

children <10 

have a 30% daily 

probability of 

receiving a full 

course of quinine 

Absolute birth 

rate of 10 per 

year; 

interventions 

begin at year 

40.   

Ndiop 

(incidence) 

20*[0.02, 0.01, 0.04, 0.00, 0.00, 0.00, 

0.32, 0.11, 0.24, 0.20, 0.04, 0.03] 

Simulation Same as Dielmo Same as 

Dielmo 



Bakau  .11 * [0.02, 0.01, 0.04, 0.00, 0.00, 0.00, 

0.32, 0.11, 0.24, 0.20, 0.04, 0.03] 

Seasonality 

assumed to 

be Ndiop-

like, 

magnitude 

interpolated 

None Cohort of 

10000, 

followed from 

birth. 

Sukuta 3 * [0.07, 0.08, 0.04, 0.02, 0.03, 0.04, 

0.22, 0.13, 0.18, 0.09, 0.07, 0.05] 

Seasonality 

assumed to 

be Dielmo-

like, 

magnitude 

interpolated 

None Same as above 

Kilifi – North 5.6 * [ 0.11, 0.04, 0.00, 0.08, 0.01, 0.30, 

0.31, 0.09, 0.01, 0.00, 0.02, 0.03] 

Seasonality 

from [12], 

magnitude 

interpolated  

None Same as above 

Kilifi – South 34.1 * [ 0.11, 0.04, 0.00, 0.08, 0.01, 

0.30, 0.31, 0.09, 0.01, 0.00, 0.02, 0.03] 

Seasonality 

from [12], 

magnitude 

interpolated 

None Cohort of 2000 



Siaya 55 * [0.13, 0.21, 0.08, 0.14, 0.15, 0.08, 

0.04, 0.03, 0.03, 0.01, 0.04, 0.05] 

Seasonality 

assumed to 

be 

Namawala-

like, 

magnitude 

interpolated 

None Cohort of 2000 
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