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Summary Equations: Metapopulation Model of Transmission

The model presented in this paper is based on a model described in Silal et al. [1]. The model comprises

six patches; five to represent Mpumalanga municipalities, and one for Maputo province, Mozambique.

Each patch comprises three sub-patches: (1) the local population of patch i currently in patch i, (2) the

local population of patch i having returned from travel to a foreign place (Maputo, if the patch is South

African and vice versa) and (3) the population from the foreign place currently in patch i. A malaria

transmission model is developed for each sub-patch where the sub-patch population is divided into six

compartments representing the population susceptible to malaria (S), the population at the infectious stage

that receives treatment (I), the untreated symptomatic population at the infectious stage (C), the

untreated asymptomatic population at the infectious stage (A), the untreated asymptomatic, sub-patent

(< 100 parasites/µs) infectious population (M) and the population susceptible to malaria, but with prior

asymptomatic infection (P). The liver and blood stage of the infection is incorporated as a delay in the

flow between the susceptible and infectious stage compartments.

Descriptions of the compartments and parameters governing the flows between compartments are provided

inTables 1 and 2 respectively. This model structure differs from that presented in Silal et al. in two

ways [1]. Firstly, given that the purpose of this paper is to predict the impact of FSAT, it is necessary to
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model infectious stage infections in more detail. The sensitivity of diagnostic screening tools is such that

sub-patent infections, i.e. infections with a low parasite count, may often be missed. These infections then

remain untreated and continue to contribute to the infectious reservoir in the area. For this reason, the

untreated infectious stage compartment in Silal et al is decomposed into the C, A and M compartments

described earlier. Secondly, the blood stage of infection is incorporated as a delay in the flow between the

susceptible and infectious stage compartments in order to simplify the model structure given the addition

of asymptomatic and sub-patent infection compartments.

The force of infection λi[t] for each patch i is a function of the level of vector control, the annual number of

mosquito bites per person x proportion of bites testing positive for sporozoites for patch i (βi) and the

proportion of infectiousness in the population lagged to reflect the infectiousness proportion at the time the

mosquito was infected.

λi[t] = (1− vci[t] ∗ vef)βi ×
∑3
k=1(Ii,k[t− 4] + Ci,k[t− 4] +Ai,k[t− 4] +Mi,k[t− 4])

Ni[t− 4]
.

Population migration between the different patches is characterised by three sets of movements:

1. Movement may occur between any two of the the five Mpumalanga patches i and j at a rate 1
κi,j

where

1

κi,j
=

1

k
×

1

(1+
√

(xi−xj)2+(yi−yj)2)lwgt∑5
i=1

1

(1+
√

(xi−xj)2+(yi−yj)2)lwgt

if i, j = 1, 2, 3, 4, 5 & i 6= j

= 0 if i or j = 6 (local movement only)

1

κi,j
=

1

κj,i

where (xi, yi) and (xj , yj) are the centroid coordinates for patches i and j respectively. This

movement is weighted inversely by distance so that movement between South African patches that

are closer together occurs at a higher rate than those further apart.

2. Movement may occur when South African citizens cross the border into Maputo (from patch

i = 1− 5 in sub-patch 1 to patch 6 in sub-patch 3) and return (patch 6 in sub-patch 3 to patch

i = 1− 5 in sub-patch 2) at a rate of 1
ζi,6

where
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1

ζi,6
=

1

z
×

1

(1+
√

(xi−x6)2+(yi−y6)2)fwgt∑5
i=1

1

(1+
√

(xi−x6)2+(yi−y6)2)fwgt

if i = 1, 2, 3, 4, 5

= 0 otherwise

1

ζi,6
=

1

ζ6,i

where (xi, yi) and (x6, y6) are the centroid coordinates for patches i and 6 respectively. This

movement is weighted inversely by distance so that movement between the South African patches

and Maputo that are closer together occurs at a higher rate than those further apart.

3. Movement may also occur when Mozambican citizens cross the border into Mpumalanga (from patch

6 in sub-patch 1 to patch j = 1− 5 in sub-patch 3) and return (patch j = 1− 5 in sub-patch 3 to

patch 6 in sub-patch 2) at a rate of 1
$6,j

where

1

$6,j
=

1

vyr
×

1

(1+
√

(x6−xj)2+(y6−yj)2)fwgt∑5
i=1

1

(1+
√

(x6−xj)2+(y6−yj)2)fwgt

if j = 1, 2, 3, 4, 5 & yr = 1, 2

= 0 otherwise

1

$6,j
=

1

$j,6

where (x6, y6) and (xj , yj) are the centroid coordinates for patches 6 and j respectively. This

movement is weighted inversely by distance so that movement between the South African patches

and Maputo that are closer together occurs at a higher rate than those further apart.

This leads to the following set of differential equations.

Sub-patch 1 (Local population): For each patch i with population movement (local or foreign) to

patch j (i, j ε{1, 2, .., 6}, j 6= i ):

dSi,1
dt

= µNi︸︷︷︸
(1)

−λi[t− σ]seasi[t]Si,1︸ ︷︷ ︸
(2)

+
1

r + τ
Ii,1︸ ︷︷ ︸

(3)

+
1

ρ
Pi,1︸ ︷︷ ︸
(4)

+
1

α
Si,2︸ ︷︷ ︸
(5)

+
∑
j

1

κi,j
(Sj,1 − Si,1)︸ ︷︷ ︸
(6)

− 1

$i,j
Si,1︸ ︷︷ ︸

(7)

− 1

ζi,6
Si,1︸ ︷︷ ︸

(8)

−µSi,1︸ ︷︷ ︸
(9)

dIi,1
dt

= pλi[t− σ]seasi[t](Si,1 + Si,2)︸ ︷︷ ︸
(10)

+ pλi[t− σ]seasi[t](Pi,1 + Pi,2)︸ ︷︷ ︸
(11)

− 1

r + τ
Ii,1 +

1

α
Ii,2 +

∑
j

1

κi,j
(Ij,1 − Ii,1)
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− 1

$i,j
Ii,1 −

1

ζi,6
Ii,1 − µIi,1

dCi,1
dt

= pc1(1− p)λi[t− σ]seasi[t](Si,1 + Si,2)︸ ︷︷ ︸
(12)

+ pc2(1− p)λi[t− σ]seasi[t](Pi,1 + Pi,2)︸ ︷︷ ︸
(13)

− 1

i1
Ci,1︸ ︷︷ ︸

(14)

+
1

α
Ci,2+

∑
j

1

κi,j
(Cj,1 − Ci,1)− 1

$i,j
Ci,1 −

1

ζi,6
Ci,1 − µCi,1

dAi,1
dt

= (1− pc1)(1− p)λi[t− σ]seasi[t](Si,1 + Si,2)︸ ︷︷ ︸
(15)

+ (1− pc2)(1− p)λi[t− σ]seasi[t](Pi,1 + Pi,2)︸ ︷︷ ︸
(16)

+
1

i1
Ci,1

− 1

i2
Ai,1︸ ︷︷ ︸

(17)

+
1

α
Ai,2 +

∑
j

1

κi,j
(Aj,1 −Ai,1)− 1

$i,j
Ai,1 −

1

ζi,6
Ai,1 − µAi,1

dMi,1

dt
=

1

i2
Ai,1 −

1

i3
Mi,1 +

1

α
Mi,2 +

∑
j

1

κi,j
(Mj,1 −Mi,1)− 1

$i,j
Mi,1 −

1

ζi,6
Mi,1 − µMi,1

dPi,1
dt

=
1

i3
Mi,1︸ ︷︷ ︸
(18)

−λi[t− σ]seasi[t](Pi,1 + Pi,2)− 1

ρ
Pi,1 +

1

α
Pi,2 +

∑
j

1

κi,j
(Pj,1 − Pi,1)− 1

$i,j
Pi,1

− 1

ζi,6
Pi,1 − µPi,1

(1) Births in patch i

(2) Local incidence arising from sub-patch 1

(3) Recovery of treated infectious stage infections at a rate dependent on the time to seek treatment and the time
to recovery

(4) Return to full susceptibility at a rate determined by the duration of clinical immunity

(5) Assimilation of population in sub-patch 2 (locals having returned from foreign travel) back into sub-patch 1
from whence they originated.

(6) Movement between local patches (1-5) out of and into the compartment

(7) Movement of local patch i population to foreign patch j when i=6 and j = 1-5; =0 for all other values of i as
this rate is particular to movement of Maputo population (patch 6)

(8) Movement of local patch i population to foreign patch 6 when i=1-5; =0 for i=6 as this rate is particular to
movement of the Mpumalanga population to and from Maputo (patches 1-5)

(9) Deaths in patch i from this compartment

(10) New infections destined to be treated having arisen from susceptible populations in sub-patch 1 (local
population) and sub-patch 2 (local population having returned from foreign travel) as these are infections due
to local transmission.

(11) New infections destined to be treated having arisen from susceptible population with prior asymptomatic
infection in sub-patches 1 and 2

(12) New clinical infections destined to remain untreated having arisen from susceptible populations in
sub-patches 1 and 2

(13) New clinical infections destined to remain untreated having arisen from susceptible population with prior
asymptomatic infection in sub-patches 1 and 2

(14) Development of clinical untreated infections to asymptomatic infections at a rate dependent on the duration
of clinical untreated infections
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(15) New asymptomatic infections destined to remain untreated having arisen from susceptible populations in
sub-patches 1 and 2

(16) New asymptomatic infections destined to remain untreated having arisen from susceptible population with
prior asymptomatic infection in sub-patches 1 and 2

(17) Development of asymptomatic to sub-patent infections at a rate dependent on the duration of asymptomatic
infections

(18) Recovery of sub-patent infections at a rate dependent on the duration of sub-patent infections

Sub-patch 2 (Local population returning from foreign travel) : For each patch i moving to patch

j (i, j ε{1, 2, .., 6}, j 6= i )

dSi,2
dt

= −λi[t− σ]seasi[t]Si,2︸ ︷︷ ︸
(19)

+
1

r + τ
Ii,2 +

1

ρ
Pi,2 −

1

α
Si,2︸ ︷︷ ︸

(20)

+
∑
j

1

κi,j
(Sj,2 − Si,2)︸ ︷︷ ︸
(21)

+
∑
j

1

$i,j
Sj,3︸ ︷︷ ︸

(22)

+
1

ζi,6
S6,3︸ ︷︷ ︸

(23)

−µSi,2

dIi,2
dt

= − 1

r + τ
Ii,2 −

1

α
Ii,2 +

∑
j

1

κi,j
(Ij,2 − Ii,2) +

∑
j

1

$i,j
Ij,3 +

1

ζi,6
Ij,3 − µIi,2

dCi,2
dt

= − 1

i1
Ci,2 −

1

α
Ci,2 +

∑
j

1

κi,j
(Cj,2 − Ci,2) +

∑
j

1

$i,j
Cj,3 +

1

ζi,6
Cj,3 − µCi,2

dAi,2
dt

=
1

i1
Ii,2 −

1

i2
Ai,2 −

1

α
Ai,2 +

∑
j

1

κi,j
(Aj,2 −Ai,2) +

∑
j

1

$i,j
Aj,3 +

1

ζi,6
Aj,3 − µAi,2

dMi,2

dt
=

1

i2
Ai,2 −

1

i3
Mi,2 −

1

α
Mi,2 +

∑
j

1

κi,j
(Mj,2 −Mi,2) +

∑
j

1

$i,j
Mj,3 +

1

ζi,6
Mj,3 − µMi,2

dPi,2
dt

=
1

i3
Mi,2 − λi[t− σ]seasi[t](Pi,2 + Pi,2)︸ ︷︷ ︸

(24)

−1

ρ
Pi,2 −

1

α
Pi,2 +

∑
j

1

κi,j
(Pj,2 − Pi,2) +

∑
j

1

$i,j
Pj,3

+
1

ζi,6
Pj,3 − µPi,2

(19) New infections arising from sub-patch 2 due to local transmission and not infections contracted while
travelling

(20) Assimilation of population in sub-patch 2 (locals having returned from foreign travel) back into sub-patch 1
from whence they originated.

(21) Movement between local patches (1-5) out of and into the compartment

(22) Movement of patch 6 population from foreign patch j, sub-patch 3 back into patch i but in sub-patch 2, when
i=6 and j = 1-5; =0 for all other values of i as this rate is particular to movement of Maputo population
(patch 6)

(23) Movement of patch i population from foreign patch 6 sub-patch 3 back into patch i, sub-patch 2, when i=1-5;
=0 for j=6 as this rate is particular to movement of the Mpumalanga population to and from Maputo
(patches 1-5)
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(24) New infections arising from the susceptible population with a prior asymptomatic infection in sub-patch 2

Sub-patch 3 (Foreign population) : For each patch i moving to patch j (i, j ε{1, 2, .., 6}, j 6= i )

dSi,3
dt

= −λi[t− σ]seasi[t]Si,3︸ ︷︷ ︸
(25)

+
1

r + τ
Ii,3 +

1

ρ
Pi,3 +

∑
j

1

κi,j
(Sj,3 − Si,3)︸ ︷︷ ︸
(26)

+
1

$i,j
(Sj,1 − Si,3)︸ ︷︷ ︸

(27)

+
∑
j

1

ζi,j
(Sj,1 − Si,3)︸ ︷︷ ︸
(28)

−µSi,3

dIi,3
dt

= pfyrλi[t− σ]seasi[t]Si,3︸ ︷︷ ︸
(29)

+ pfyrλi[t− σ]seasi[t]Pi,3︸ ︷︷ ︸
(30)

− 1

r + τ
Ii,3 +

∑
j

1

κi,j
(Ij,3 − Ii,3)+

1

$i,j
(Ij,1 − Ii,3) +

∑
j

1

ζi,j
(Ij,1 − Ii,3)− µIi,3

dCi,3
dt

= pc1(1− pfyr)λi[t− σ]seasi[t]Si,3︸ ︷︷ ︸
(31)

+ pc2(1− pfyr)λi[t− σ]seasi[t]Pi,3︸ ︷︷ ︸
(32)

− 1

i1
Ci,3

+
∑
j

1

κi,j
(Cj,3 − Ci,3) +

1

$i,j
(Cj,1 − Ci,3) +

∑
j

1

ζi,j
(Cj,1 − Ci,3)− µCi,3

dAi,3
dt

= (1− pc1)(1− pfyr)λi[t− σ]seasi[t]Si,3︸ ︷︷ ︸
(33)

+ (1− pc2)(1− pfyr)λi[t− σ]seasi[t]Pi,3︸ ︷︷ ︸
(34)

+
1

i1
Ci,3 −

1

i2
Ai,3

+
∑
j

1

κi,j
(Aj,3 −Ai,3) +

1

$i,j
(Aj,1 −Ai,3) +

∑
j

1

ζi,j
(Aj,1 −Ai,3)− µAi,3

dMi,3

dt
=

1

i2
Ai,3 −

1

i3
Mi,3 +

∑
j

1

κi,j
(Mj,3 −Mi,3) +

1

$i,j
(Mj,1 −Mi,3) +

∑
j

1

ζi,j
(Mj,1 −Mi,3)− µMi,3

dPi,3
dt

=
1

i3
Mi,3 − λi[t− σ]seasi[t]Pi,3︸ ︷︷ ︸

(35)

−1

ρ
Pi,3 +

∑
j

1

κi,j
(Pj,3 − Pi,3) +

1

$i,j
(Pj,1 − Pi,3)

+
∑
j

1

ζi,j
(Pj,1 − Pi,3)− µPi,3

(25) New infections arising from sub-patch 3 due to local transmission and not infections contracted from patch of
origin

(26) Movement between local patches (1-5) out of and into the compartment

(27) Movement of patch 6 population from patch 6, sub-patch 1 into patch i, sub-patch 3, when i=1-5 and j = 6
and movement from patch i, sub-patch 3 back into to patch 6, sub-patch 2. This rate =0 for all other values
of j as it is particular to movement of Maputo population (patch 6)

(28) Movement of patch j population from patch j, sub-patch 1, into patch 6 sub-patch 3 when i=6 and j=1-5 and
movement from patch 6, sub-patch 3 back into patch j, sub-patch 2 ; This rate=0 for j=6 as it is particular to
movement of the Mpumalanga population (patches 1-5) to and from Maputo
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(29) New infections destined to be treated having arisen from susceptible population in sub-patch 3

(30) New infections destined to be treated having arisen from susceptible population with prior asymptomatic
infection in sub-patches 3

(31) New clinical infections destined to remain untreated having arisen from susceptible population in sub-patch 3

(32) New clinical infections destined to remain untreated having arisen from susceptible population with prior
asymptomatic infection in sub-patch 3

(33) New asymptomatic infections destined to remain untreated having arisen from susceptible population in
sub-patch 3

(34) New asymptomatic infections destined to remain untreated having arisen from susceptible population with
prior asymptomatic infection in sub-patch 3

(35) New infections arising from the susceptible population with a prior asymptomatic infection in sub-patch 3

Table 1: Compartment Descriptions
Compartment Description

Si,k Susceptible Population in patch i and sub-patch k
Ii,k Infectious Treated Population in patch i and sub-patch k
Ci,k Symptomatic Infectious Untreated Population in patch i and sub-patch k
Ai,k Asymptomatic Infectious Untreated Population in patch i and sub-patch k
Mi,k Infectious Population with Untreated Sub-patent Infectious in patch i and sub-

patch k
Pi,k Susceptible Population with prior asymptomatic infection in patch i and sub-

patch k

Table 2: Values, descriptions and sources of the parameters
driving the base metapopulation model of transmission. (i =
{TC;MB;UJ ;NK;BB;MP})

Parameter Description Value Source
N Population size for the six

patches
2.5 × 106 [2, 3]

µ Mortality/birth Rate 105
10000 [4]

σ Period between liver stage
and onset of gameto-
cytemia

2 weeks [5–8]

r Artemether Lumefantrine
elimination half-life

6 days [9]

τ Time to seek treatment 1/2 week Expert opinion
ptf Probability of treatment

failure
0.01 [10]

p Proportion of local in-
fected population receiv-
ing treatment

0.95 [11,12]

pfyr Proportion of foreign in-
fected population that re-
ceive treatment in a local
patch

pf1 = 0.5851 (0.5850, 0.5853)
(pre April 2005)
pf2 = 0.7000 (0.6998, 0.7010)
(post April 2005)

Estimated from
model fitting
process

i1 Duration of clinical in-
fection before becoming
asymptomatic

0.7 weeks [13]

7



i2 Duration of asymptomatic
infection before becoming
sub-patent

5.5 weeks [13,14]

i3 Duration of sub-patent in-
fection

24 weeks [13]

ρ Duration of clinical immu-
nity

5 years [15]

pc1 Probability of clinical in-
fection from naive individ-
uals

0. 9997 (0.9756, 0.9999) [7, 16]

pc2 Probability of clinical in-
fection from partially im-
mune individuals

0.883 (0.877, 0.888) Estimated from
data

seasi Seasonal forcing function
for foreign sourced cases

Derived from data [17]

βi Annual number of
mosquito bites per
person x proportion of
bites testing positive for
sporozoites for patch i

βTC = 4.488 (4.178, 4.798)
βMB = 6.034 (5.967, 6.101)
βUJ = 0.655 (0.589, 0.723)
βNK = 1.546 (1.521, 1.571)
βBB = 4.436 (4.264, 4.609)
βMP = 99.065 (98.920, 99.210)

Estimated from
model fitting
process

λi(t) Force of infection see Additional file 1
1
α Rate of assimilation of

population in sub-patch
2 (locals having returned
from foreign travel) back
into sub-patch 1 from
whence they originated

1.5 weeks−1 Expert opinion

1
k Rate of movement be-

tween 5 Mpumalanga mu-
nicipalities

1/ 201.436 (1/204.833,
1/198.040)
weeks−1

Estimated from
model fitting
process

1
vyr

Maputo residents: Rate
of movement between Ma-
puto and 5 Mpumalanga
municipalities

1
v1

= 1/7616.743 weeks−1

(1/7663.186, 1/7570.299)
(pre April 2005)
1
v2

= 1/3227.213 weeks−1

(1/3187.684, 1/3266.742)
(post April 2005)

Estimated from
model fitting
process

1
$i,j

Maputo residents: Rate
of movement between Ma-
puto and 5 Mpumalanga
municipalities based on
1
vyr

and distance between

patches

see Additional file 1

1
z Mpumalanga residents:

Rate of movement be-
tween 5 Mpumalanga
municipalities and Ma-
puto

1
z = 1/359.462 weeks−1

(1/361.057, 1/357.866)
Estimated from
model fitting
process
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1
ζi,j

Mpumalanga residents:
Rate of movement be-
tween 5 Mpumalanga
municipalities and Ma-
puto based on 1

z and
distance between patches

see Additional file 1

fwgt Foreign movement weight
intensity

10.615 (10.512, 10.719) Estimated from
model fitting
process

lwgt Local movement weight
intensity

1.419 (1.343, 1.495) Estimated from
model fitting
process

vef Effectiveness of vector
control

0.9785 (0.9783, 0.9787) Estimated from
model fitting
process

vci[t] Vector Control Coverage
in patch i × efficiency

Derived from data

Hybrid metapopulation DE-IBM model

The metapopulation DE model and the IBM model are linked such that the IBM model is nested in the

DE model. At each time step, the DE model generates flows of a population that leave one compartment

and enter another compartment (in the various sub-patches and patches). The IBM model takes the flow

value at each time step once it has been negated from a compartment, discretises it into individuals in a

population, executes the IBM algorithm, re-groups the individuals back into a population flow, and adds it

into its destination compartment.

The metapopulation DE transmission model predicts (among other things) the number of local and foreign

people entering the five Mpumalanga patches from the Maputo patch. These flows of the proportion of the

population leaving compartments in the Maputo patch are interrupted before they enter the Mpumalanga

patches. The proportion of the population is multiplied by the population size and discretised into

individual people. These individual people are then subject to the individually-based FSAT model

described earlier. The FSAT IBM algorithm is applied. Once all individuals have passed through the

algorithm, they are grouped once again into populations per patch, sub-patch and compartment and the

flow into Mpumalanga is completed and the transmission model continues processing as normal. For

example, if the flow between Maputo and Nkomazi patch is 0.002 from the Susceptible compartment and

0.01 from the Infected compartment, then in a population of 1000 people, this translates to 2 susceptible

individuals and 10 infected individuals passing through the border. Applying the FSAT IBM algorithm to

these individuals may result in only 1 susceptible and 8 infected individuals agreeing to be screened. The
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detectable threshold may be such that of the 8 infected individuals, only 6 test positive for malaria. Thus 6

receive treatment but perhaps only 4 adhere to the regimen and of the two that do not adhere to treatment,

one fails treatment. In the absence of FSAT, two susceptible individuals and ten infected individuals would

have been added to population of Nkomazi. The result of the FSAT campaign is that the 2 susceptible

individuals remain malaria free, 5 of the 12 individuals are cured of their malaria and will be added to the

susceptible population in Nkomazi. The 2 infected individuals who did not participate in the FSAT

campaign and the one who failed treatment will be added to the infected population in Nkomazi. The 2

infected individuals who were screened but did not test positive will be added to the sub-patent infected

population in Nkomazi. Thus the IBM model is completely nested in the metapopulation DE model.

Data Fitting Method

The model is fitted to weekly treated case data from 2002 to 2008, and then validated with data from 2009

to 2012. The model is run from 1990 to reach a steady state before being fitted to data from 2002. IRS

coverage and drug treatment are included in the model for the data fitting. The number of treated cases in

each sub-patch k are fitted to the data using the maximum likelihood approach assuming an underlying

Poisson distribution with canonical parameter λ as the average number of treated cases per week. The

metapopulation non-linear differential equation model is expressed in terms of average rates of movement

between compartments, thus λ is a function of the parameters to be estimated (listed in Table 1)

The Poisson probability of observing x counts when the average number of counts per week is λ given by

P (x|λ) =
λx exp−λ

x!
.

As the model is being fitted to time series data with N time bins, λ, the expected number of counts per bin

is a function of time. Assuming the independence of data from different time bins, the likelihood reduces to

L(λi|xi) =

N∏
i=1

λxi
i exp−λi

xi!

and the log likelihood becomes

ln(L(λi|xi)) =

N∑
i=1

xiln(λi)− λi − ln(xi!).
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The model is fitted to 16 sets of data for each weekly time bin: treated cases for three sub-patches in five

Mpumalanga municipalities and treated cases for Maputo. Under the assumption of independence, the log

likelihood to be maximised is

ln(L(λs,i|xs,i)) ∝
N∑
i=1

16∑
s=1

xs,iln(λs,i)− λs,i

The log-likelihood is negated and minimised using the hydroPSO function implementing a version of the

Particle Swarm Optimisation algorithm in the R package hydroPSO v0.3-3 [18,19]. Particle Swarm

Optimisation is a global stochastic optimisation technique initially inspired by social behaviour of birds

and fish [20,21]. It shares similarities with evolutionary optimisation techniques like Genetic Algorithms

(GA) but explores the multi-dimensional solution space on the basis of individual and global best-known

“particle positions” without evolution operators. Problems are optimised by moving particles (the

population of candidate solutions) around the search-space based on the particles’ position and velocity.

Particle movements are a function of local best positions and other best particle positions in the

search-space. Thus the particles ”swarm” towards the best solutions in the search-space.

The parameters estimated through the model fitting process are presented in Table 1. The model with the

estimated parameter values is run for a further 3 years to be further validated by comparison to data

between 2009 and 2012. Figure 1 shows the data fitting and validation for all 16 sets of data. The model

fits the data well with the exception of the Bushbuckridge patch pre 2006 in sub-patches 2 and 3, where

the model overestimates the level of infections. This is to be expected as very little data was available on

imported infections in this area at the time. Both the timing and level of malaria transmission in Maputo

is captured by the model fitting process.
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Figure 1: Predicted weekly treated cases (blue: 2002 - 2008; red: 2009-2012) fitted to and validated with data (black).
The 95% uncertainty range for weekly case predictions is shown.
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Test of Particle Swarm Optimisation routine

A synthetic test of the PSO routine is presented to assess if the method is capable of estimating the true

model parameters and data given the high dimensionality of model. A set of parameters is prescribed for

the model, and the model is run stochastically with this set of parameters to generate a dataset (Table 3).

The optimisation routine is then performed on the model to assess if the search algorithm is able to locate

the underlying parameter values. Figure 2 shows that the synthetic dataset closely resembles the

deterministic model output generated with the true parameter values with a few noticeable differences:

Malaria incidence in Nkomazi and Maputo are lower in the synthetic dataset, and rate of movement

between residents of Maputo and Umjindi and Nkomazi are lower in the synthetic dataset. Figure 3 shows

that the red line (model with estimated parameters from PSO routine) very closely resembles the synthetic

dataset (black) and the estimated parameter values are in the region of the ”true” parameter values

(Table 3). As to be expected, the estimated β values for Nkomazi and Maputo are below the true values

and the rate of movement from Maputo to the local municipalities is lower than the true value.

Table 3: Particle Swarm Optimisation Test Parameters
Parameter Description True Estimated

βi Annual number of mosquito bites per
person x proportion of bites testing pos-
itive for sporozoites for patch i

βTC = 4
βMB = 6
βUJ = 0.65
βNK = 1.50
βBB = 4
βMP = 80

βTC = 4.40
βMB = 5.06
βUJ = 0.68
βNK = 1.19
βBB = 3.08
βMP = 65.53

1
k Rate of movement between 5

Mpumalanga municipalities
1/200 1/153.19

1
vyr

Maputo residents: Rate of movement
between Maputo and 5 Mpumalanga
municipalities

1
v1

= 1/7000
(pre April 2005)
1
v2

= 1/3000
(post April 2005)

1
v1

= 1/6953.23
(pre April 2005)
1
v2

= 1/3465.46
(post April 2005)

1
z Mpumalanga residents: Rate of move-

ment between 5 Mpumalanga munici-
palities and Maputo

1
z = 1/350 1

z = 1/300

pc2 Probability of clinical infection from
partially immune individuals

0.80 0.793

pf Proportion of foreign infected popula-
tion that receive treatment in a local
patch

0.60 0.55

fwgt Foreign movement weight intensity 10 11.21
lwgt Local movement weight intensity 1.5 1.25
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Figure 2: Predicted weekly treated cases for 2002-2008 for Model with true parameter values (green) and synthetic data
generated from running this model stochastically (black)
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Figure 3: Predicted weekly treated cases for 2002-2008 for optimised model with estimated parameters (red) and synthetic
data (black)
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Migration rate sensitivity analysis

A test of the sensitivity of results to changes in the effect of varying coverage, detection thresholds, take-up

proportions and adherence is presented for different levels of migration. As in the main paper, the decrease

in local infections was measured for each combination of factors and a linear model regressing these four

factors on the decrease in local infections was fitted to assess sensitivity. The absolute standardised

regression coefficients in Figure 4 suggest that regardless of the level of migration and holding the other

factors constant, detection threshold in an FSAT campaign has the largest absolute impact on decreasing

local infections, followed by coverage achieved and take-up proportion.
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Figure 4: Sensitivity Analysis of factors assessed in FSAT model for different migration rates: detection threshold (blue),
coverage (red), take-up proportion (orange) and adherence (green)
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