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Appendix 1 Temperature

In 24 different analyses, spanning multiple decades and much of Africa and Asia, the relation-

ship between minimum temperature and the malaria metric of interest varied depending on

both space and the type of variable used as a proxy for malaria. Investigations into mosquito

abundance in both western Africa and Thailand [1, 2] and mosquito size in Thailand [3] found a

direct relationship between a given month’s minimum temperature and mosquito abundance or

development. Due to the temporal scale at which mosquito development occurs (1-2 weeks), it is

not surprising that there is an immediate effect of minimum temperature on variables associated

with mosquito development. Contrastingly, a range of lags was found to be significant between

minimum monthly temperature and direct measures of malaria (e.g. case data, malaria morbid-

ity, etc.). The lag found to be most significant between minimum temperature ranged from 0
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months in countries such as Iran [4] and Burundi [5, 6] up to 5 months in Eastern Africa, specif-

ically the East African Highlands [7] and Ethiopia [8]. In all but one instance, the relationship

between minimum monthly temperature was found to be positive; in Mali, there was a signif-

icant negative relationship between the abundance of two mosquito vectors and the coinciding

month’s minimum temperature. As could be expected, many of the investigations that found

a significant effect of minimum temperature also tested maximum temperature (a relationship

that was not as true in the converse). Several studies discarded maximum temperature as a

significant driver when tested in a model that already contained minimum temperature [e.g.

[9, 10]], but others noted the co-linearity between the two variables (minimum and maximum

monthly temperature) and just selected one of them for further testing [11].

Presumably, at least partially due to several empirical results about the effect of high tem-

peratures on mosquito lifespan and suitability in lab settings, maximum temperature was the

most frequently tested temperature covariate. In 19 different studies, maximum temperature

was found to be a significant driver of malaria or a proxy for malaria. As with minimum

temperature, the lag identified as ‘optimal’ depended heavily on the response variable within

the study. Studies that correlated temperature to malaria cases (14) varied greatly in the re-

ported lag between maximum temperature and cases, ranging from 0 months in China [12] and

Ethiopia [8] up to 5 months in the African highlands [7]. Of these studies, six simultaneously

found minimum temperature as a significant driver; only one study in southwest China found

a different significant lag for minimum temperature (1 and 2 months) and maximum temper-

ature (4 months) [13]. Also in agreement with studies that found minimum temperature to

be a significant driver of mosquito abundance, there was an instantaneous effect of maximum

temperature found mosquito development rates in Tanzania, Ghana and Kenya [14]. Only one

study each identified a significant lag between maximum temperature and malaria prevalence [15]

or malaria morbidity [6]. In both cases, an instant effect of maximum temperature was identified.
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Eight studies identified mean monthly temperature as an important driver. Incidence was

correlated with mean temperature in five studies, and again results varied greatly. In South

Africa significant lags between mean temperature and incidence were identified up to 9 months

in the past [16], while in Thailand the effect was instantaneous [17]. A small number of studies

investigated other temperature-related quantities, such as degree-days and temperature indices

based on previous work. In each of these few cases, all related to mosquito development, there

was no lag between the malarial covariate and the temperature-based driver.

Appendix 2 Rainfall

The majority of the studies that identified rainfall as a significant driver of malaria concentrated

on African and Asian locations with only one concentrating on South America [18]. The max-

imum lag used for rainfall variables was four months in East Africa. Lag values were generally

longer in Africa and shorter in Asia (Additional File 17). Contrastingly, one study in Sri Lanka

used a three month lag [19] and several African studies used predictors with no lag. The majority

of malaria measures predicted by rainfall were counts of cases or measures of malaria influence.

Because these measures dominated the studies, examples range from long lags to no lag at all.

Studies using EIR and vector density were less heavily represented within these studies and,

where used, the rainfall predictors tended to have shorter lags (e.g. [20]). The most common

variable to be used alongside rainfall as a predictor was some form of temperature metric (21

papers) followed by NDVI (5 papers) or both together (3 papers). However, rainfall was used as

a lone predictor in 14 analyses. Many papers noted that both temperature and rainfall might

affect vector reproduction and development, but only one [7] noted that, for their study area,

rainfall or temperature alone was not enough to describe malaria trends.
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Of the studies using rainfall metrics to predict malaria variables, the most common pre-

cipitation measure was mean monthly rainfall, which was used by ten papers. Most of these

papers also used temperature as a predictor variable along with three which used NDVI and

one which used variables such as a soil water index and distance to water. Along with mean

monthly rainfall [21] also found a relationship between seasonal indices of both malaria and

rainfall. [22] and [23] used a broader characterisation of seasonality by using the season itself

(wet or dry) as a predictor of malaria morbidity. One paper [20], focusing on mosquito density,

used a short-term mean between their two study periods and two papers used a weekly mean

[24, 25], with a combination of lag values for the predictor variables. Seven of these analyses

used total rainfall to predict malaria metrics. Of these, three papers used temperature variables,

four used NDVI, and one of these found NDVI to be a more accurate predictor than rainfall

[26]. Along with these common predictors one study used influence of Indian Ocean Dipole in

conjunction with total monthly rainfall and one study used total monthly rainfall alone, but

found little significance due to the climate of the area [27].

Several other interesting approaches used rainfall as a predictor of malaria metrics. Abeku

et al. [28] used the frequency of abnormal weather conditions, including monthly rainfall, to

investigate the relationship with epidemic events in the Ethiopian rift valley. Ceccato et al. [29]

also calculated anomalous rainfall events and used both satellite and weather station rainfall

data. Where available, weather station rainfall data were found to be a more accurate predictor

of malaria cases. Teklehaimanot et al. [24, 25] investigated malaria cases in Ethiopia and used

weekly rainfall data along with minimum and maximum temperature in several districts. They

tried lags ranging from 4-12 weeks and found that relationships between malaria cases and rain-

fall changed depending on the lag time and district of interest. Gosoniu et al. [15] also spanned

several locations, in West Africa on this occasion, and found that different meteorological pre-

dictors (e.g. mean, min, max or total rainfall, NDVI and temperature) were more suitable for
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predicting malaria prevalence in different areas. Other multi-location studies included [8] who

also found that different predictors were included in the best performing models in different ar-

eas. Rainfall was included in models for four out of the 23 areas and was lagged for two months

in one location and three in another to predict malaria cases in Ethiopia. Thomson et al. [30]

is also a multi-location study using rainfall data in a discussion and partial demonstration of

an early warning system for malaria using DEMETER. In contrast to the above studies using

monthly, or longer, data and multiple locations [20] used a single location with daily visits to

investigate weekly biting rate and EIR in Kisian, Kenya. Their model included maximum and

minimum temperature, NDVI and soil moisture along with in situ precipitation measurements.

Precipitation alone was a limited predictor of human biting rate but lagged for 2-4 weeks and

used in conjunction with minimum temperature it was more predictive. Soil moisture was a

more effective predictor of EIR.

Rather than a rainfall time-series or lagged rainfall alone, some studies used specific rainfall

values in their models of malaria metrics. Craig et al. [16] and Pascual et al. [31] both used the

rainfall recorded during a set time prior to the malaria season. Craig et al. [16] used the total

rainfall during the summer period along with a lagged temperature variable to predict malaria

cases in South Africa whereas Pascual et al. [31] used the total rainfall from the previous winter

(November-January) to predict malaria cases in Kenya. Two further papers used rainfall from

a particular period but in their studies, this period was variable. Beguin et al. [32] used the

mean precipitation from the wettest month and Kulkarni et al. [33] used the mean rainfall in

the warmest and coldest months; both papers were attempting to predict malaria distributions.

Rather than rainfall itself as a predictor, Monteirode Barros et al. [18] used the number of wet

days as a predictor of vector biting rate in their study in Brazil finding that from the number

of wet days, monthly rainfall, adult densities, degree of wetness, temperature and humidity, wet

days was the only significant predictor of biting rate.
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Appendix 3 Vegetation Index

The majority of the papers that found a vegetation index to be a significant driver of malaria

metrics used NDVI. Of those that used NDVI, the majority of studies used monthly maximum

NDVI, some used mean NDVI (e.g. Sogoba et al. [2]) and Gosoniu et al. [15] used a combina-

tion of the two. One paper used the Enhanced Vegetation Index (EVI; [34]) along with Evapo-

transpiration index (ETa) and two papers [35, 36] used the vegetation and temperature condition

indices (VCI and TCI respectively). Eight of the sixteen papers using vegetation indices used

the number of malaria cases as their response variable. Two papers used malaria prevalence as

their predictor [37, 15] and one used incidence of malaria [38]. Five of the papers were more

closely focused on mosquitoes carrying malaria. Two papers attempted to predict EIR. One of

these also investigated weekly biting rate and the other vector density. Two further papers used

vector density alone and one paper used the relative frequency of two malaria vectors in Mali [2].

Half of the papers in this group lagged the vegetation index and all but one [34] of these

papers used NDVI. None of the studies which focused on malaria vectors rather than disease

metrics used lagged vegetation indices. The longest lags were found in India [26] and Bangladesh

[39] using NDVI and Ethiopia [34] using EVI and ETa. Of the papers investigating malaria cases,

two did not lag the vegetation index. These studies were located in Eritrea and Paraguay and

both used NDVI as a predictor. One paper investigating malaria prevalence in West Africa

used NDVI with no lag. The majority of the papers used vegetation indices as predictors in

their own right but some papers used them as proxies for other variables. Creasey et al. [40]

used NDVI as a surrogate for rainfall and Gaudart et al. [38] used NDVI as a proxy for several

environmental variables, especially relative humidity. Ceccato et al. [29] used the relationship

between NDVI and other environmental variables in the opposite direction and tried to predict
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NDVI values using rainfall data. Other studies used vegetation indices in conjunction with other

environmental predictors, the most common being rainfall, as discussed above. In general, an

increase in NDVI was associated with an increase in malaria metric. However, Haque et al.

[39] found the opposite relationship in Bangladesh. This was explained because in this region

mosquitoes require dry periods so that rivers dry up to form pools in which they can breed.
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