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Additional file 1:  

Supplementary 

This Additional file includes data that support and expand some of the interpretations and 

conclusions drawn in the main text, but whose inclusion would detract from the main 

argument. 
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The Expectation-Maximization (EM)-algorithm 

     The algorithm is an iterative method that consists of two steps i.e. an expectation step (E) 

and a maximization step (M) at each iterative [9, 10, 11, 12, 13]. The observed data consists 

of MOI and SNP genotypes (wildtype, resistant, mixed) at several genetic loci. The algorithm 

was developed to obtain the maximum likelihood estimates of the haplotypes and is applied 

to the observed genotype data with an initial assumption of the haplotype frequency. The 

distribution of haplotype in an individual is assumed to be multinomial with a sample size 

equal to the MOI value of that blood sample. Let n represent the number of blood samples 

(sample size), i is an index used to refer to an individual blood sample (i=1, …, n),  j is an 

index used to refer to a unique haplotype combination within a blood sample i, h(i,j) is a set of 

haplotypes, s is the number of SNPs genotyped, q is the max MOI identified in the dataset, z 

is the number of potential haplotypes in the population (2s), m is a vector of MOIs for each 

patient, ),...( 1 nmmm  . G is a vector of genotype group for each patient, ),...( 1 nggG  . H is 

a vector of haplotype sets, ),...( 1
zHHH   and θ is a vector of estimated haplotype 

frequencies, ),...( 1
z  . 

     The Log-Likelihood (LL) is obtained by multiplying the probability of each individual. 

The probability of observing a particular genotype from an individual is the summation of all 

combination of haplotype frequencies for all haplotype infections that are consistent with the 

genotype. The complete data log-likelihood is give by:  
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To reach the LL need to identify the sets of haplotypes that could give rise to the observed 

SNP genotype in a patient. This is achieved by systemically testing each combination of 

haplotypes within the MOI to identify the haplotype sets h(i,j) that can give rise to the 

observed patient genotypes. 
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     The algorithm starts by specifying an initial set of estimated haplotype frequencies. This is 

held in a vector of haplotype frequency (θ) whose elements equal the total number of possible 

haplotypes (z). In the E-step (i.e. calculating the expectation of the complete data), the 

expectation is given by: 
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The factor  k  gives more weight to the lower frequency haplotypes and was included to try 

and improve the accuracy of their estimated frequencies (it may be a constant, such as 0.1 but 

by default we set its value as 1/mi). Each possible haplotype combination within each patient 

is then multiplied by the current estimate of their haplotype frequencies to produce the 

variable E(i,j), assuming that the haplotype frequencies (θ) are true values. 

     The M-step maximizes the expectation of the complete data to update the estimated 

haplotype frequencies: 
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The Gi is the number of patients with genotype group i, ΣiϵGi is summation of all individuals i 

that are in genotype group Gi. The M-step updates the estimated haplotype frequency: after a 

renewed estimation it returns to E-step and repeat the process until the estimated haplotype 

frequencies converge and remain constant. The iterations are tracked and convergence 

measured as: 
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and iteration stopped when this metric falls below 1E-17. 

     The probabilities of possible haplotype of each individual in the sample are calculated as 

the posterior probabilities based on the estimated haplotype frequencies.  



4 
 

 








)( 1

1

)(

i

z

y

z

y

ih



         (S5) 

     When MOI information on a patient was unmeasured or missing, the EM-algorithm 

proceeds as follows. To initialise the analyses each induvial is assigned an MOI according to 

the distribution frequency used by Jaki et al. [7] and all haplotype combinations within this 

MOI that give rise to the observed genotype are listed and processed. If no haplotype 

combinations can generate the observed genotype then another MOI is assigned, again using 

the MOI distribution of Jaki et al. [7]. The EM-algorithm then proceeds as described above. 

An alternative algorithm would be to list all the MOI and their possible haplotype 

combinations for a patient (and scaling equation S1 by the probability of that MOI in the 

population). Initial analyses using this approach incurred a very substantial speed penalty for 

a very small improvement in accuracy, hence out approach above i.e. that only a single MOI 

is investigated for each patient. 

 

A detailed step-by-step guide describing how this algorithm is implemented and applied to 

malaria data sets is available on request from IMH. 
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The Markov Chain Monte Carlo (MCMC)-algorithm 

     The algorithm begins by assigning a sequence of haplotypes from a multinomial 

distribution (initial guess) that can give rise to the observed SNP genotype in each patient. 

These haplotypes are held in a matrix D whose size depends on the sample size (n, rows), and 

the maximum number of observed MOI (q, columns). The elements of this matrix are the 

haplotypes that are consistent with the observed patient genotype. For example if patient i is 

currently assumed to hold haplotypes 01, 10, 11 and 11 and maximum MOI is 8 then row i of 

matrix D would be {01,10,11,11,-,-,-,-} where '-' indicates no haplotype is required. The 

elements of matrix D can then be used to obtain the current estimates of haplotype 

frequencies by calculating haplotype proportions which are, stored in vector θ. The next step 

is to choose an individual at random from among those individuals with ambiguous 

genotypes (i.e. individuals where more than one sequence of haplotypes can give raise to the 

observed genotype). An update is proposed by simulating a new sequence of haplotypes 

consistent with observed genotype and MOI. Since this is a sequence it takes account of the 

fact that there can be several sequences all giving rise to the same haplotype combinations 

(do not need to include multinomial coefficients in the calculations). An update may be 

proposed (and accepted because Ψ=1; see below) even if both the original and update are different 

sequences within the same combination (e.g. {01, 10, 11, 11,-,-,-,-} may be replaced {10, 01, 11, 11,-

,-,-,-}. The decision whether or not to accept the update depends on the following metric: 
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Where mu is the MOI of the proposed update sequence; mo is the original sequence MOI, hiu 

is haplotype of the updated parameter; hip is haplotype of the previous parameter. If Ψ≥1 then 

the update is always accepted, else Ψ is the probability of accepting the update. The addition 

of a constant k (1/MOI) gives more weight to low-frequency haplotypes and is discussed 
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more fully in the main text. At the end of each iteration the current estimate of haplotype 

frequencies in θ is updated. This process of proposing and accepting/rejecting updates until 

the estimated haplotype frequencies converged stationary distribution. Iterations defined as 

being completed when every heterozygous individual has been selected and tested for an 

update. Patients are selected at random (i.e. there is no set sequence) but every patient can 

only be selected one time in each iteration. The algorithm makes at least 100 iteration and the 

trace and autocorrelation output as graphs (supplementary Figures S24 and S25). The 

algorithm tested with run 100 iteration simulates multiple chains with different starting values 

and reached the same results. The trace plots the iteration number against the sampled values 

(theta) for each variable (haplotype) in the chain, with a separate plot per variable 

(haplotype). It can show when the chain gets stuck in certain areas of the parameter space, 

which indicates bad mixing. The autocorrelation is the correlation between the theta values in 

the current iteration with their values in the previous iteration. This enable the user to check 

that convergence to a stationary distribution has occurred, to identify the burn in period, and 

discount frequency estimates made during this burn-in period. This can be done by visual 

inspection of the graphs. 

 

Suggested algorithm when MOI information on a patient is unknown 

     When MOI information on a patient is unknown (i.e. was not unmeasured or missing) the 

MCMC algorithm proceeds as follows. One difference to the analysis above is that when 

MOI can be updated in each patient (Algorithms 2 to 4) then homozygous individuals also 

need to be incorporated and updates proposed in each iteration: the haplotypes they contain 

will be the same, but their MOI may differ: 

 

     Algorithm 1: To initialise the analyses each individual is assigned an MOI according to 



7 
 

the distribution frequency given by Jaki et al. [7] and a combination of haplotypes is selected 

within this MOI that generates the observed genotype. If no combination within that MOI can 

generate the observed genotype, then the process is repeated until a MOI/haplotype 

combination is obtained that is consistent with the observed genotype. The patients’ MOI are 

never changed during the MCMC updating and the algorithm proceeds as described above 

i.e. by assigning a sequence of haplotypes from a multinomial distribution that can give rise 

to the observed SNP genotype in each patient and accepted/rejected the proposed changes 

using Ψ as described above in Equation S6. 

 

     Algorithm 2: An update to the MOI could be proposed where patient MOI is unknown and 

accepted/rejected during the updating stage. The algorithm run with changing the MOI option 

when it suggests a new sequence of haplotypes consistent with observed genotype and MOI, 

the algorithm draws a new MOI according to the Jaki et al. [7] distribution; of note, the draw 

are always made from the MOI distribution of Jaki et al. throughout the iterations. All the 

other stages of the algorithm stay the same as described before and an update is 

accepted/deleted as described by Equation S6 above. Initial analyses suggested updating the 

MOI during MCMC made no difference to the results (Supplementary Figure S11). This 

would have the advantage that patients’ MOI would be updated each iteration and hence the 

MCMC algorithm naturally provide distributions of both haplotype and MOI frequencies 

(Supplementary Figure S15); time precluded a fully investigation of this approach. The 

datasets are simulated assuming the MOI distribution of Jaki et al, and the MOI distribution 

used in the MCMC is also that of Jaki. This algorithm therefore analyses a situation where 

the MOI distribution in the population is known a priori. It therefore serves as a baseline for 

the two algorithms below, which update the MOI distribution each iteration and will drift 

away from the initial MOI distribution. 
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     Algorithm 3: The MOI distribution is initially that of Jaki et al, but this distribution is 

updated at the end of each iteration to reflect the MOI distribution in the current iteration; the 

process is run until both the haplotype estimates and the MOI distribution have become 

stable. Each patient has an update proposed as follows. An updated MOI is suggested (which 

may be the same as the current MOI) according to the current MOI distribution in that 

iteration, and a haplotype combination within that updated MOI is identified that generates 

the required observed genotype of that patient. If no such combination is possible within the 

proposed, updated MOI then a new MOI is proposed and the process repeated until an 

updated has been identified that does reflect the patient genotype. The decision as to whether 

to accept the update is then: 
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Where mu is the MOI of the update and mo is the original MOI; p(mu) and p(mo) are their 

frequencies in the current MOI distribution; hiu is haplotype of the updated parameter; hip is 

haplotype of the previous parameter. The initial MOI distribution is that of Jaki et al but it is 

updated each iteration so, in principle, any initial MOI distribution could be used. 

 

     Algorithm 4: The problem with the algorithm above is that it will favour the simplest 

MOI/genotypes consist with the observed data; hence they are likely to under-estimate the 

true MOI. For example, if a patient has only a single non-mixed genotype, for example [0,1] 

then the predicted MOI is likely to be 1 with a single haplotype [0,1] which would arise with 

frequency θ[0,1]; a values of MOI=4 is consistent with the data, but the probability of 

generating that genotype is (θ[0,1])
4 which is obviously far less likely to be accepted by the 

algorithms. The same applies to more complex, heterozygous genotypes so attempted to 
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offset this effect, at least partially, by allowing for the fact that different sequences can give 

rise to the same combinations e.g. [0,1]+[1,0]+[0,1] is the same combination as 

[0,1]+[0,1]+[1,0]. It is done using the multinomial coefficient: 
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k1, k2 etc are the number of haplotypes of type 1,2 within the proposed genotype. So that: 
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Figure S1: The correlation (R2) between population/sample and estimated haplotype frequency across statistical methods among LoDSNP=0.10, 

LoDMOI=0.05, the line through [0,1] represents the situation where both estimates are identical. 
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Figure S2: The correlation (R2) between population/sample and estimated haplotype frequency across statistical methods among LoDSNP=0.20, 

LoDMOI=0.10, the line through [0,1] represents the situation where both estimates are identical. 
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Figure S3: The correlation (R2) between population/sample and estimated haplotype frequency across statistical methods among LoDSNP=0.30, 

LoDMOI=0.15, the line through [0,1] represents the situation where both estimates are identical. 
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Figure S4: The change coefficient (C) between population/sample and estimated haplotype frequency across statistical methods among 

LoDSNP=0.10, LoDMOI=0.05. 
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Figure S5: The change coefficient (C) between population/sample and estimated haplotype frequency across statistical methods among 

LoDSNP=0.20, LODMOI=0.10. 
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Figure S6: The change coefficient (C) between population/sample and estimated haplotype frequency across statistical methods among 

LoDSNP=0.30, LoDMOI=0.15. 
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Figure S7: The correlation (R2) between population/sample and the EM algorithm estimated haplotype frequency across different constant k (0, 

0.01, 0.05, 0.1, 0.2, and 0.5) among LoDSNP=0.00, LoDMOI=0.00, the line through [0,1] represents the situation where both estimates are 

identical. 
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Figure S8: The correlation (R2) between population/sample (RAF <0.15) and the EM algorithm estimated haplotype frequency across different 

constant k (0, 0.01, 0.05, 0.1, 0.2, and 0.5) among LoDSNP=0.00, LoDMOI=0.00, the line through [0,1] represents the situation where both estimates are 

identical. 
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Figure S9: The correlation (R2) between population/sample and estimated haplotype frequency, the line through [0,1] represents the situation 

where both estimates are identical among 2 SNPs, LoDSNP=0, LoDMOI=0 and unknown MOI (no results can be obtained from MHF because that method cannot 

deal with unknown MOI). 
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Figure S10: The correlation (R2) between population/sample and estimated haplotype frequency, the line through [0,1] represents the situation 

where both estimates are identical among 2 SNPs, LoDSNP=0.30, LoDMOI=0.15 and unknown MOI (no results can be obtained from MHF because that method 

cannot deal with unknown MOI). 
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Figure S11: The correlation (R2) between estimated and population/sample haplotype frequencies. The patients’ MOI were assumed to be 

unknown and the results were obtained using MCMC Algorithm 2. 
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Figure S12: The correlation (R2) between estimated and population/sample haplotype frequencies. The patients’ MOI were assumed to be 

unknown and the results were obtained using MCMC Algorithm 3 using an initial distribution of Jaki et al. 
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Figure S13: The correlation (R2) between estimated and population/sample haplotype frequencies. The patients’ MOI were assumed to be 

unknown and the results were obtained using MCMC Algorithm 3 using an initial MOI distribution that was uniform across MOI. 
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Figure S14: The correlation (R2) between estimated and population/sample haplotype frequencies. The patients’ MOI were assumed to be 

unknown and the results were obtained using MCMC Algorithm 4 using an initial distribution of Jaki et al. 
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Figure S15: The MOI frequency distributions in the whole patient population (“Population MOI”), the patient population in the sample under 

analysis (“Sample MOI”) and the distribution estimated by the MCMC algorithm allowing for different levels of genetic detection i.e. 

LoDSNP=0%/10%/20%/30% and LoDMOI=0%/5%/10%/15%. This came from algorithm 2 (i.e. start with Jaki et al distribution) mean after 100 iterations. 
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Figure S16: The MOI frequency distributions in the whole patient population (“Population MOI”), the patient population in the sample under 

analysis (“Sample MOI”) and the distribution estimated by the MCMC algorithm (with change MOI) allowing for different levels of genetic 

detection i.e. LoDSNP=0%/10%/20%/30% and LoDMOI=0%/5%/10%/15%. This came from algorithm 3 (i.e. always use a Jaki et al distribution) mean after 100 

iterations. 
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Figure S17: The MOI frequency distributions in the whole patient population (“Population MOI”), the patient population in the sample under 

analysis (“Sample MOI”) and the distribution estimated by the MCMC algorithm (with change MOI) allowing for different levels of genetic 

detection i.e. LoDSNP=0%/10%/20%/30% and LoDMOI=0%/5%/10%/15%. This came from algorithm 3 (i.e. always use a uniform distribution) mean after 100 

iterations. 
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Figure S18: The MOI frequency distributions in the whole patient population (“Population MOI”), the patient population in the sample under 

analysis (“Sample MOI”) and the distribution estimated by the MCMC algorithm (with change MOI) allowing for different levels of genetic 

detection i.e. LoDSNP=0%/10%/20%/30% and LoDMOI=0%/5%/10%/15%. This came from algorithm 4 (i.e. start with Jaki et al distribution) mean after 100 

iterations. 
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Figure S19: The correlation (R2) between population/sample and estimated haplotype frequency among 3 SNPs across statistical methods and 

LoDSNP=0.00, LoDMOI=0.00, the line through [0,1] represents the situation where both estimates are identical. 
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Figure S20: The correlation (R2) between population/sample and estimated haplotype frequency among 3 SNPs across statistical methods and 

LoDSNP=0.30, LoDMOI=0.15, the line through [0,1] represents the situation where both estimates are identical. 
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Figure S21: The change coefficient (C) between population/sample and estimated haplotype frequency across statistical methods among 3SNPs 

and LoDSNP=0.00, LoDMOI=0.00. 
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Figure S22: The change coefficient (C) between population/sample and estimated haplotype frequency across statistical methods among 3SNPs 

and LoDSNP=0.30, LoDMOI=0.15. 
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Figure S23: The similarity index (IF) and mean squared error (MSE) of the estimates haplotype frequency compared population/sample 

haplotype frequency across statistical methods (MHF, MalHaploFreq; R-EM, malaria em; Bayesian, Bayesian statistic; EM, EM algorithm; MCMC, Markov Chain 

Monte Carlo) among 3 SNPs and four conditions of LoDSNP (30%, 20%, 10%, 0%) and LoDMOI (15%, 10%, 5%, 0%). 
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Figure S24: A trace plot and density plots of the iteration number against the value of the haplotype frequencies at 100 iterations. 
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Figure S25: Autocorrelation plots to assess the autocorrelations between the haplotype frequencies of markov chain at 100 iterations. 
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Figure S26: Gelman Rubin Brooks plot (shrink factor as the number of iterations) and mean plot (mean as the number of iterations) with 2 
chains at 100 iterations. 
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Figure S27: A trace plot and density plots of the iteration number against the value of the haplotype frequencies at 1000 iterations. 
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Figure S28: Autocorrelation plots to assess the autocorrelations between the haplotype frequencies of markov chain at 1000 iterations. 
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Figure S29: Gelman Rubin Brooks plot (shrink factor as the number of iterations) and mean plot (mean as the number of iterations) with 2 

chains at 1000 iterations. 

 


