Eave tubes simple model

t_{1} average search time to locate a property
t_{2} average search time to locate a human host when searching indoors
t_{3} average time spent resting indoors post-feed
t_{4} average time spent finding ovipositing site
t_{5} average time spent from ovipositing to host searching
t_{6} cycles from infection to infectiousness
μ_{1} base mortality rate whilst searching for property or laying site
μ_{2} base mortality rate whilst searching for host inside property
μ_{3} base mortality whilst resting inside property (non IRS)
μ_{4} base mortality rate whilst outdoors and not searching
P_{1} proportion of properties with external protection (eave tubes)
P_{2} proportion of properties with eave tubes protected with IRS
P_{3} proportion of properties without ET which are protected with IRS
P_{4} proportion of ET properties protected with bednets
P_{5} proportion of people under bednets in ET properties with bednets
P_{6} proportion of non-Et properties protected with bednets
P_{7} proportion of people under bednets in non-ET properties with bednets
P_{8} probability per feed that mosquito will acquire Plasmodium infection
P_{9} probability that an entered ET property will have IRS
P_{10} probability that an entered non-ET property will have IRS
D_{1} probability mosquito deflected away from ET-protected house
D_{2} probability deflected away from human under ITN
D_{3} probability exits ET property if deflected away from net-protected human
D_{4} probability exits non-ET property if deflected away from net-protected human
D_{5} probability deflected away from IRS protected property before selecting a host
M_{1} if not deflected, probability mosquito killed before entering ET protected house
M_{2} probability mosquito killed by ET/eave nets etc when exiting protected house
M_{3} if not deflected, prob mos. killed by bed net before feeds on human under net
M_{4} probability killed by bed net after feeding on human under net
M_{5} base mortality when attempting to feed - pre bite
M_{6} base mortality when attempting to feed - post bite
M_{7} base mortality when attempting to oviposit - pre lay
M_{8} base mortality when attempting to oviposit - post lay
M_{10} probability killed by IRS whilst resting in IRS treated property

Probability survives search time to locate a property $S_{1}=e^{-t_{1} \mu_{1}}$
Probability survives search to locate a human host indoors $S_{4}=e^{-t_{2} \mu_{2}}$
Total probability deflected from located ET property without attempting to feed
$D_{6}=D_{1}+\left(1-D_{1}\right)\left(1-M_{1}\right)\left(P_{2} D_{5}+\left(1-P_{2} D_{5}\right)\left(1-M_{2}\right) \frac{P_{4} P_{5} S_{4} D_{2} D_{3}}{1-S_{4} P_{5} D_{2}\left(1-D_{3}\right)}\right)$
Total probability exits non-ET property without attempting to feed
$D_{7}=P_{3} D_{5}+\left(1-P_{3} D_{5}\right) P_{6} \frac{S_{4} P_{7} D_{2} D_{4}}{1-S_{4} P_{7} D_{2}\left(1-D_{4}\right)}$

Probability survives searching \& enters a no-ET property $S_{2}=S_{1}\left(1-P_{1}\right)\left(1-P_{3} D_{5}\right)$

Probability survives searching and enters an ET property $S_{3}=$ $S_{1} P_{1}\left(1-D_{1}\right)\left(1-P_{2} D_{5}\right)\left(1-M_{1}\right)$

Probability survives background mortality whilst resting indoors $S_{5}=e^{-t_{3} \mu_{3}}$ Probability survives background mortality whilst finding laying-site $S_{6}=$ $e^{-t_{4} \mu_{1}}\left(1-M_{7}\right)$
Probability survives background mortality between laying and host searching $S_{7}=e^{-t_{5} \mu_{4}}\left(1-M_{8}\right)$
Probability survives \& attempts to feed on human under bed net (in ET property)
$S_{8}=\frac{P_{4} S_{4} P_{5}\left(1-D_{2}\right)}{\left(1-S_{4} P_{5} D_{2}\left(1-D_{3}\right)\right)}$
Probability survives \& attempts to feed on human without bed net (in ET property)
$S_{9}=S_{4}\left(1-P_{4}+\frac{P_{4}\left(1-P_{5}\right)}{1-S_{4} P_{5} D_{2}\left(1-D_{3}\right)}\right)$
Probability survives attacking to bite if feeding on bed-net protected human (in ET property) $S_{10}=\left(1-M_{3}\right)\left(1-M_{5}\right)$
Probability survives attacking to bite if feeding on human without bed net (in ET property) $S_{11}=1-M_{5}$
Probability survives feeding post-bite if feeding on bed-net protected human (in ET property) $S_{12}=\left(1-M_{4}\right)\left(1-M_{6}\right)$
Probability survives feeding post bite if feeding on human without bed net (in ET property) $S_{13}=1-M_{6}$
Probability survives indoor search and bites human under bed net (in ET property) $S_{14}=S_{8} S_{10}$
Probability survives indoor search and bites human without bed net (in ET property)
$S_{15}=S_{9} S_{11}$
Probability survives locating and biting human under bed net (in ET property)
$S_{16}=S_{14} S_{12}$
Probability survives locating and biting human without bed net (in ET property)
$S_{17}=S_{15} S_{13}$
Probability vector in ET property is in IRS treated property
$P_{9}=\frac{P_{2}\left(1-D_{5}\right)}{P_{2}\left(1-D_{5}\right)+\left(1-P_{2}\right)}$
Probability survives finding host, feeding, resting and exiting property in IRS treated property (in ET property) $S_{18}=\left(S_{16}+S_{17}\right) S_{5} P_{9}\left(1-M_{10}\right)\left(1-M_{2}\right)$
Probability survives finding host, feeding, resting and exiting property in unsprayed property (in ET property) $S_{19}=\left(S_{16}+S_{17}\right) S_{5}\left(1-P_{9}\right)\left(1-M_{2}\right)$

Probability survives \& attempts to feed on human under bed net (in non-ET property)

$$
S_{20}=\frac{S_{4} P_{6} P_{7}\left(1-D_{2}\right)}{\left(1-S_{4} P_{7} D_{2}\left(1-D_{4}\right)\right)}
$$

Probability survives \& attempts to feed on human without bed net (in non-ET
property) $S_{21}=S_{4}\left(1-P_{6}+\frac{P_{6}\left(1-P_{7}\right)}{1-S_{4} P_{7} D_{2}\left(1-D_{4}\right)}\right)$
Probability survives attacking to bite if feeding on bed-net protected human (in nonET property) $S_{22}=\left(1-M_{3}\right)\left(1-M_{5}\right)$
Probability survives attacking to bite if feeding on human without bed net (in non-ET property) $S_{23}=1-M_{5}$
Probability survives feeding post-bite if feeding on bed-net protected human (in non-
ET property) $S_{24}=\left(1-M_{4}\right)\left(1-M_{6}\right)$
Probability survives feeding post bite if feeding on human without bed net (in non-ET property) $S_{25}=1-M_{6}$
Probability survives indoor search and bites human under bed net (in non-ET property) $S_{26}=S_{20} S_{22}$
Probability survives indoor search and bites human without bed net (in non-ET property) $S_{27}=S_{21} S_{23}$
Probability survives locating and biting human under bed net (in non-ET property)
$S_{28}=S_{24} S_{26}$
Probability survives locating and biting human without bed net (in non-ET property)
$S_{29}=S_{25} S_{27}$
Probability vector in ET property is in IRS treated property
$P_{10}=\frac{P_{3}\left(1-D_{5}\right)}{P_{3}\left(1-D_{5}\right)+\left(1-P_{3}\right)}$
Probability survives finding host, feeding, resting and exiting property in IRS treated property (in non-ET property) $S_{30}=\left(S_{28}+S_{29}\right) S_{5} P_{10}\left(1-M_{10}\right)$

Probability survives finding host, feeding, resting and exiting property in unsprayed property (in non-ET property) $S_{31}=\left(S_{28}+S_{29}\right) S_{5}\left(1-P_{10}\right)$

Overall Probability per cycle mosquito survives to bite
$S_{32}=\frac{S_{3}\left(S_{14}+S_{15}\right)+S_{2}\left(S_{26}+S_{27}\right)}{\left(1-S_{1}\left(D_{6} P_{1}+\left(1-P_{1}\right) D_{7}\right)\right)}$
Overall Probability per cycle mosquito survives to lay eggs
$S_{33}=\frac{S_{6}\left(S_{3}\left(S_{18}+S_{19}\right)+S_{2}\left(S_{30}+S_{31}\right)\right)}{1-S_{1}\left(D_{6} P_{1}+D_{7}\left(1-P_{1}\right)\right)}$

Overall Probability mosquito survives full cycle $S_{34}=S_{33} S_{7}$

Average infectious bites per vector per lifetime $L A I B=\frac{S_{32} P_{8} S_{34}^{t_{6}}}{\left(1-S_{34}\right)\left(1-S_{34}\left(1-P_{8}\right)\right)}$
$L A I B_{0}=$ average infectious bites per vector per lifetime with no intervention
Average infectious bites per vector per lifetime as proportion of value with no intervention $V L A I B=\frac{L A I B}{L A I B_{0}}$

The relative transmission potential ($R T P$) is defined as the average number of infectious bites per vector per lifetime per person expressed as a proportion of the number with no intervention

If we assume that juvenile density-dependence effects mean that the rate at which new adult vectors join the population is the same with and without intervention, and that the size of the human population is unaffected by any intervention, then $R T P=$ VLAIB.

Average infectious bites per vector per lifetime per person for people using bednet in ET property

$$
R T P_{1}=R T P \times \frac{\text { proportion of bites per cycle taken on humans with ET \& net }}{\text { proportion of humans protected with ET \& net }}
$$

$$
=\frac{\text { LAIB }}{\text { LAIB }_{0}} \frac{S_{3} S_{14}}{S_{3}\left(S_{14}+S_{15}\right)+S_{2}\left(S_{26}+S_{27}\right)} \frac{1}{P_{1} P_{4} P_{5}}
$$

Average infectious bites per vector per lifetime per person for people not using bednet in ET property
$R T P_{2}=R T P \times \frac{\text { proportion of bites per cycle taken on humans with ET no net }}{\text { proportion of humans protected with ET \& no net }}$
$=\frac{L A I B}{L^{2} I B_{0}} \frac{S_{3} S_{15}}{S_{3}\left(S_{14}+S_{15}\right)+S_{2}\left(S_{26}+S_{27}\right)} \frac{1}{P_{1}\left(1-P_{4} P_{5}\right)}$
Average infectious bites per vector per lifetime per person for people using a bednet in no ET property
$R T P_{3}=R T P \times \frac{\text { proportion of bites per cycle taken on humans with net \& no ET }}{\text { proportion of humans protected with net \& no ET }}$
$=\frac{L A I B}{L A I B_{0}} \frac{S_{2} S_{26}}{S_{3}\left(S_{14}+S_{15}\right)+S_{2}\left(S_{26}+S_{27}\right)} \frac{1}{\left(1-P_{1}\right) P_{6} P_{7}}$
Average infectious bites per vector per lifetime per person for people not using bednet in no ET property
$R T P_{4}=R T P \times \frac{\text { proportion of bites per cycle taken on humans with no net \& no ET }}{\text { proportion of humans with no net \& no ET }}$
$=\frac{L A I B}{L A I B_{0}} \frac{S_{2} S_{27}}{S_{3}\left(S_{14}+S_{15}\right)+S_{2}\left(S_{26}+S_{27}\right)} \frac{1}{\left(1-P_{1}\right)\left(1-P_{6} P_{7}\right)}$

