Additional file 5. Figure S5.

T_o for different Y_{dist}

The introduced biological timescale, T_o , is a function of temperature and spatial distribution of pools and houses. Dependence of T_o on temperature, X_{dist} , and Y_{dist} are shown in Fig. S5. Smaller X_{dist} and Y_{dist} lead higher malaria transmission potential, shortening T_o .

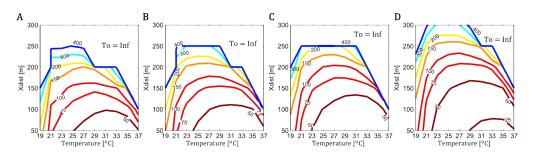


Fig. S5: Contour lines of T_o at different Y_{dist} values. Contour lines of T_o at $Y_{dist} = 70$ m (A), 50m (B), 30m (C), and 10m (D). The contour lines of T_o were drawn at intervals of 25 days from $T_o=50$ to 100, of 50 days from $T_o=100$ to 200, and of 100 days beyond that. Beyond the blue line, T_o became infinite, where the system equilibrated at $\hat{R}_o < 1$.