## SUPPLEMENTARY INFORMATION

## Screening a Protein Kinase Inhibitor Library against <br> Plasmodium falciparum

Irene Hallyburton, ${ }^{\text {a }}$ Raffaella Grimaldi, ${ }^{\text {a }}$ Andrew Woodland, ${ }^{\text {a }}$ Beatriz Baragaña, ${ }^{a}$ Torsten Luksch, ${ }^{a}$

 Ian H. Gilbert, ${ }^{\text {a,* }}$ Julie A. Frearson. ${ }^{\text {a }}$
a. Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
b. Medicines for Malaria Venture, 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland

## Tables and Figures

Table S1. Inhibitors with known anti-malarial activity identified in the pilot screen
Table S2 - Percentage activity of the panel of mammalian protein kinases when treated with hit compounds at a concentration of $10 \mu \mathrm{M}$.

Figure S1 - MMV05 Scaffold
Figure S2 - MMV06 Scaffold
Figure S3 - MMV08 Scaffold
Figure S4 - MMV09 Scaffold
Figure S5 - MMV11 Scaffold
Figure S6-General synthetic route.

## SUPPLEMENTARY INFORMATION

| Name | Concentration, mM | Percentage of Inhibition |
| :---: | :---: | :---: |
| Mitoxantrone dihydrochloride | 0.004 | $140 \pm 2$ |
| Doxorubicin hydrochloride | 0.003 | $137 \pm 2$ |
| Daunorubicin hydrochloride | 0.004 | $132 \pm 1$ |
| Pyrvinium pamoate | 0.001 | $107 \pm 1$ |
| Demecarium bromide | 0.003 | $104 \pm 2$ |
| Chloroquine diphosphate | 0.004 | $104 \pm 1$ |
| Emetine dihydrochloride | 0.004 | $103 \pm 2$ |
| Cycloheximide | 0.007 | $103.1 \pm 0.1$ |
| Benzethonium chloride | 0.004 | $102.5 \pm 0.7$ |
| Anisomycin | 0.008 | $102 \pm 2$ |
| Cephaeline dihydrochloride heptahydrate | 0.003 | $101 \pm 3$ |
| Cinchonine | 0.007 | $101 \pm 5$ |
| Pyrimethamine | 0.008 | $101 \pm 2$ |
| Methotrexate | 0.004 | $100.9 \pm 0.7$ |
| Suloctidil | 0.006 | $101 \pm 1$ |
| $(-)$-Cinchonidine | 0.007 | $100 \pm 1$ |
| Pentamidine isethionate | 0.003 | $100 \pm 4$ |
| Quinacrine dihydrochloride dihydrate | 0.004 | $100 \pm 2$ |
| Quinidine hydrochloride monohydrate | 0.005 | $100 \pm 2$ |
| Artemisinin | 0.007 | $99.5 \pm 0.1$ |
| Primaquine diphosphate | 0.004 | $100 \pm 4$ |
| Hydroquinine hydrobromide hydrate | 0.005 | $99 \pm 2$ |
| Atovaquone | 0.005 | $99 \pm 2$ |
| Berberine chloride | 0.005 | $99 \pm 2$ |
| Propafenone hydrochloride | 0.005 | $99 \pm 1$ |
| Chlorhexidine | 0.004 | $98 \pm 1$ |
| Mefloquine hydrochloride | 0.005 | $97.4 \pm 0.4$ |
| Astemizole | 0.004 | $97.3 \pm 0.8$ |
| Puromycin dihydrochloride | 0.004 | $96 \pm 5$ |
| Verteporfin | 0.003 | $95 \pm 2$ |
| Doxazosin mesylate | 0.004 | $84.0 \pm 0.6$ |
| (d,I)-Tetrahydroberberine | 0.006 | $83 \pm 2$ |
| Cyclosporin A | 0.002 | $81.4 \pm 0.6$ |
| Thonzonium bromide | 0.003 | $70 \pm 1$ |
| Triamterene | 0.008 | $69 \pm 1$ |
| Bufexamac | 0.009 | $69 \pm 2$ |
| Paclitaxel | 0.002 | $65 \pm 2$ |
| Decamethonium bromide | 0.005 | $64 \pm 3$ |
| Mycophenolic acid | 0.006 | $63 \pm 3$ |
| Metergoline | 0.005 | $56 \pm 2$ |
| Bephenium hydroxynaphthoate | 0.005 | $55.1 \pm 0.5$ |
| Clobetasol propionate | 0.004 | $50 \pm 16$ |
| Proguanil hydrochloride | 0.007 | $49 \pm 4$ |

Table S1. Inhibitors with known anti-malarial activity identified in the pilot screen (Prestwick Library).
Antimalarial drugs are shown in bold.

| MMV Series | $\sum_{\Sigma}^{N}$ | $\sum_{\sum}^{\sum}$ |  | $\sum_{\Sigma}^{ \pm}$ | $\sum_{\Sigma}^{N}$ | $\begin{aligned} & \text { O} \\ & \sum \sum \\ & \sum \end{aligned}$ | $\sum_{\Sigma}^{\infty}$ | $\sum_{\sum}^{\circ}$ | $\sum_{\Sigma}^{0}$ | $\sum_{\Sigma}^{-7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { O } \end{aligned}$ | $\begin{gathered} \text { N } \\ \underset{O}{0} \end{gathered}$ | $\begin{aligned} & \text { n } \\ & \text { O} \\ & \hline 8 \end{aligned}$ | 4 <br> 8 <br> 8 | $\begin{aligned} & \text { n } \\ & \hline 8 \\ & \hline \mathbf{Q} \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 8 \\ & \hline \mathbf{Q} \end{aligned}$ | $\begin{aligned} & \infty \\ & \hline 8 \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \mathbf{Q} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 8 \\ & \hline 8 \\ & \hline 1 \end{aligned}$ | $\begin{aligned} & \text { 강 } \\ & \text { O} \end{aligned}$ |
| MKK1 | 36 | 109 | 93 | 99 | 84 | 57 | 72 | 94 | 79 | 90 |
| ERK1 | 97 | 92 | 101 | 84 | 91 | 108 | 113 | 97 | 92 | 108 |
| ERK2 | 124 | 89 | 96 | 108 | 116 | 110 | 106 | 103 | 101 | 110 |
| JNK1 | 93 | 101 | 103 | 97 | 112 | 110 | 104 | 96 | 101 | 105 |
| JNK2 | 86 | 97 | 117 | 126 | 126 | 117 | 111 | 125 | 100 | 129 |
| p38a MAPK | 66 | 74 | 68 | 90 | 80 | 86 | 97 | 84 | 74 | 90 |
| p38b MAPK | 63 | 67 | 78 | 95 | 98 | 100 | 112 | 100 | 87 | 95 |
| p38g MAPK | 88 | 103 | 95 | 102 | 100 | 100 | 111 | 101 | 93 | 113 |
| p38d MAPK | 85 | 88 | 97 | 101 | 94 | 97 | 111 | 89 | 83 | 89 |
| ERK8 | 86 | 78 | 90 | 88 | 104 | 57 | 74 | 90 | 97 | 55 |
| RSK1 | 89 | 89 | 82 | 96 | 109 | 111 | 66 | 87 | 101 | 42 |
| RSK2 | 66 | 77 | 114 | 107 | 97 | 116 | 104 | 113 | 87 | 48 |
| PDK1 | 105 | 101 | 98 | 93 | 96 | 106 | 112 | 100 | 91 | 121 |
| PKBa | 37 | 102 | 98 | 97 | 83 | 117 | 110 | 93 | 99 | 71 |
| PKBb | 58 | 10 | 112 | 100 | 87 | 109 | 101 | 105 | 116 | 105 |
| SGK1 | 83 | 88 | 88 | 98 | 113 | 100 | 89 | 87 | 84 | 86 |
| S6K1 | 95 | 124 | 98 | 112 | 100 | 120 | 115 | 96 | 105 | 125 |
| PKA | 96 | 104 | 96 | 97 | 77 | 95 | 90 | 84 | 94 | 96 |
| ROCK2 | 93 | 103 | 93 | 111 | 98 | 100 | 94 | 96 | 112 | 101 |
| PRK2 | 90 | 101 | 94 | 101 | 92 | 98 | 106 | 93 | 92 | 76 |
| PKCa | 120 | 69 | 60 | 86 | 87 | 115 | 75 | 88 | 89 | 88 |
| PKCZ | 75 | 91 | 86 | 88 | 88 | 82 | 93 | 92 | 89 | 103 |
| PKD1 | 56 | 128 | 110 | 100 | 101 | 112 | 96 | 100 | 95 | 102 |
| MSK1 | 56 | 112 | 109 | 104 | 101 | 100 | 113 | 89 | 110 | 84 |
| MNK1 | 44 | 90 | 93 | 96 | 98 | 113 | 85 | 103 | 93 | 76 |
| MNK2 | 44 | 93 | 97 | 101 | 104 | 88 | 52 | 87 | 100 | 81 |
| MAPKAP-K2 | 108 | 104 | 108 | 97 | 128 | 102 | 92 | 93 | 89 | 126 |
| PRAK | 98 | 89 | 86 | 101 | 89 | 104 | 78 | 94 | 100 | 107 |
| CAMKKb | 92 | 88 | 89 | 103 | 92 | 71 | 75 | 74 | 100 | 89 |
| CAMK1 | 7 | 76 | 99 | 109 | 33 | 96 | 76 | 95 | 101 | 59 |
| SmMLCK | 22 | 72 | 219 | 95 | 39 | 106 | 31 | 92 | 112 | 73 |
| PHK | 98 | 105 | 97 | 118 | 122 | 110 | 68 | 106 | 112 | 73 |
| CHK1 | 80 | 97 | 99 | 84 | 109 | 113 | 99 | 95 | 88 | 102 |
| CHK2 | 61 | 64 | 92 | 94 | 93 | 48 | 72 | 94 | 82 | 107 |
| GSK3b | 92 | 97 | 106 | 96 | 58 | 100 | 102 | 105 | 95 | 120 |


| CDK2-Cyclin A | 97 | 89 | 89 | 96 | 103 | 95 | 99 | 96 | 96 | 86 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLK1 (Okadaic Acid) | 108 | 87 | 89 | 108 | 115 | 109 | 102 | 84 | 99 | 120 |
| Aurora B | 72 | 76 | 89 | 105 | 109 | 57 | 81 | 85 | 95 | 23 |
| AMPK | 47 | 86 | 102 | 107 | 94 | 104 | 99 | 94 | 117 | 88 |
| MARK3 | 98 | 105 | 104 | 111 | 110 | 107 | 114 | 103 | 101 | 110 |
| BRSK2 | 88 | 73 | 87 | 100 | 95 | 100 | 109 | 97 | 79 | 138 |
| MELK | 97 | 105 | 102 | 86 | 79 | 90 | 114 | 108 | 106 | 77 |
| CK1 | 105 | 121 | 90 | 97 | 100 | 121 | 40 | 100 | 110 | 107 |
| CK2 | 103 | 97 | 101 | 104 | 99 | 97 | 93 | 91 | 116 | 109 |
| DYRK1A | 86 | 81 | 79 | 92 | 96 | 94 | 62 | 93 | 85 | 117 |
| DYRK2 | 90 | 88 | 114 | 104 | 92 | 93 | 71 | 101 | 99 | 111 |
| DYRK3 | 89 | 99 | 91 | 92 | 91 | 92 | 109 | 87 | 83 | 113 |
| NEK2a | 91 | 101 | 93 | 91 | 89 | 87 | 84 | 87 | 93 | 79 |
| NEK6 | 101 | 94 | 100 | 88 | 103 | 109 | 103 | 106 | 91 | 108 |
| IKKb | 137 | 200 | 196 | 101 | 110 | 99 | 103 | 198 | 208 | 125 |
| PIM1 | 94 | 103 | 102 | 93 | 113 | 104 | 100 | 101 | 105 | 97 |
| PIM2 | 100 | 96 | 103 | 90 | 83 | 104 | 118 | 97 | 86 | 123 |
| PIM3 | 89 | 62 | 35 | 22 | 76 | 90 | 88 | 97 | 78 | 82 |
| SRPK1 | 88 | 81 | 97 | 106 | 102 | 124 | 95 | 88 | 96 | 116 |
| MST2 | 97 | 92 | 96 | 103 | 85 | 92 | 108 | 92 | 98 | 92 |
| EF2K | 83 | 105 | 107 | 106 | 99 | 125 | 114 | 93 | 109 | 101 |
| HIPK2 | 86 | 93 | 99 | 93 | 86 | 106 | 111 | 90 | 98 | 102 |
| PAK4 | 45 | 76 | 94 | 105 | 77 | 53 | 77 | 85 | 99 | 57 |
| PAK5 | 87 | 77 | 76 | 93 | 140 | 82 | 97 | 92 | 96 | 87 |
| PAK6 | 100 | 109 | 111 | 111 | 115 | 100 | 109 | 89 | 105 | 117 |
| Src | 103 | 81 | 90 | 106 | 103 | 64 | 92 | 95 | 95 | 85 |
| Lck | 53 | 116 | 80 | 92 | 91 | 65 | 90 | 109 | 87 | 39 |
| CSK | 98 | 112 | 105 | 88 | 112 | 99 | 99 | 94 | 89 | 112 |
| FGF-R1 | 103 | 58 | 75 | 128 | 100 | 97 | 115 | 100 | 91 | 73 |
| IRR | 65 | 70 | 77 | 80 | 86 | 90 | 67 | 90 | 56 | 99 |
| EPH A2 | 96 | 96 | 91 | 108 | 96 | 107 | 98 | 115 | 94 | 61 |
| MST4 | 77 | 86 | 83 | 105 | 69 | 90 | 106 | 93 | 90 | 88 |
| SYK | 108 | 84 | 85 | 102 | 132 | 114 | 99 | 95 | 91 | 103 |
| YES1 | 84 | 83 | 61 | 101 | 95 | 45 | 76 | 80 | 81 | 53 |
| IGF-1R | 107 | 90 | 102 | 109 | 128 | 116 | 116 | 110 | 109 | 97 |
| VEG-FR | 91 | 53 | 98 | 97 | 99 | 81 | 77 | 100 | 99 | 87 |
| BTK | 85 | 87 | 86 | 100 | 92 | 77 | 100 | 90 | 80 | 51 |
| IR-HIS | 78 | 97 | 66 | 78 | 92 | 92 | 47 | 76 | 86 | 76 |
| EPH-B3 | 88 | 81 | 71 | 108 | 97 | 102 | 95 | 78 | 76 | 103 |
| TBK1 (du12569) | 102 | 104 | 97 | 101 | 104 | 112 | 108 | 109 | 94 | 123 |
| IKKe(14231) | 88 | 98 | 88 | 98 | 98 | 92 | 103 | 103 | 95 | 101 |

Table S2 - Percentage activity of the panel of mammalian (mainly human) protein kinases when treated with hit compounds at a concentration of $10 \mu \mathrm{M}$.

## MMV05

MMV05 is a 3,6-disubstituted 1H-pyrazolo[3,4-b]pyridine (Supplementary Figure 1). Only one compound A0005 was identified in the initial screening campaign, this compound could not be repurchased and was already under development by MMV so no further work was conducted on this series. The hit compound A 0005 is 10 nM vs. P. falciparum and showed a 100 fold selectivity window over MRC5 cells. A0005 was tested vs. the 76 kinases in the DSTT panel, inhibiting only CAMK1 and SmMLCK by $67 \%$ and $61 \%$ respectively at $10 \mu \mathrm{M}$. The presence of a large number of metabolically labile groups would be of concern if this series was to be progressed. Table 3 in main body of the paper contains a summary of A0005 and its physical properties as generated by Stardrop.


Figure S1 - MMV05 Scaffold

## MMV06

MMV06 is a 2,6-disubstituted pyrimidine (Supplementary Figure 2). Only one example of MMV06 was identified in the initial screening campaign, A0006. A0006 is very active against $P$. falciparum and $>350$ fold selective over MRC5 cells. A0006 was tested in the DSTT kinase panel inhibiting CHK2 and YES1 by $52 \%$ and $55 \%$ respectively at $10 \mu \mathrm{M}$. A0006 is no longer commercially available so could not be reconfirmed and since MMV06 was under development by MMV, no further work was conducted on this series. Table 3 (main body of the paper) contains a summary of A0006 and its physical properties as generated by Stardrop.


Figure S2 - MMV06 Scaffold

## MMV08

MMV08 consists of a 3,8-disubstituted imidazo[1,2-a]pyrazine core (Supplementary Figure 3). Only one example of MMV08 was identified in the primary screen. The hit A0008 has a low nanomolar $\mathrm{EC}_{50}$ against MRC5 cells but is over 20 fold less active against $P$. falciparum. Interestingly the MRC5 toxicity is not reflected in the kinase panel results, with only SmMLCK, CK1 and IR-HIS inhibited by between $50-70 \%$ at $10 \mu \mathrm{M}$. The MMV08 hit could not be repurchased and as MMV was already developing the series we did not progress it into hit expansion. Table 3 (main body of the paper) contains a summary of A0008 and its physical properties as generated by Stardrop.


Figure S3 - MMV08 Scaffold

## MMVO9

MMV09 is a 1,4'-disubstituted 1-(thiazol-2-yl)ethanol (Supplementary Figure 4). Only one submicromolar example was identified in the primary screen. The hit A0009 was repurchased and retesting the compound confirmed the data obtained from the screening stocks. A0009 was tested in the kinase panel but did not hit any of the 76 kinases, $A 0009$ is also a $>75$ fold selective inhibitor of $P$. falciparum over MRC5 cell growth. MMV was already developing analogues of MMV09 so no further work was conducted on this series. Table 3 (main body of the paper) contains a summary of A0009 and its physical properties as generated by Stardrop.


Figure S4 - MMV09 Scaffold

## MMV11

MMV11 is a 3,6-disubstituted imidazo[1,2-b]pyridazine (Supplementary Figure 5). Only one submicromolar example of this series was identified in the primary screen. A0011 was tested in the kinase panel inhibiting RSK1, RSK2, Aurora B and Lck by between $50-80 \%$ at $10 \mu \mathrm{M}$. A0011 is only a 10 fold selective inhibitor of P. falciparum over MRC5 cell growth. The hit A0011 could not be repurchased and as this series was under development by MMV, no further work was conducted. Table 3 (main body of the paper) contains a summary of A0011 and its physical properties as generated by Stardrop.


Figure S5 - MMV11 Scaffold

## Chemistry Experimental

Chemistry. General. Solvents and reagents were purchased from commercial suppliers and used without further purification. Dry solvents were purchased in sure sealed bottles stored over molecular sieves. Normal phase TLCs were carried out on pre-coated silica plates (Kieselgel $60 \mathrm{~F}_{254}$, BDH) with visualisation via UV light (UV254/365 nm) and/or ninhydrin solution. Flash chromatography was performed using Combiflash Companion Rf (Teledyne ISCO) and prepacked RediSep silica gel columns purchased from Teledyne ISCO. Preparative HPLC separations were performed with a Gilson HPLC (321 pumps, 819 injection module, 215 liquid handler/injector) connected to a Gilson 155 UV/vis detector. HPLC chromatographic separations were conducted using Waters XBridge C18 columns, $19 \times 100 \mathrm{~mm}$, 5 um particle size; using $0.1 \%$ ammonia in water or $0.1 \%$ formic acid in water (solvent $A$ ) and acetonitrile (solvent $B$ ) as mobile phase. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance DPX 500 spectrometer ( ${ }^{1} \mathrm{H}$ at 500.1 MHz ). Chemical shifts ( $\delta$ ) are expressed in ppm recorded using the residual solvent as the internal reference in all cases. Signal splitting patterns are described as singlet ( s ), doublet ( d ), triplet ( t ), quartet ( q ), multiplet (m), broadened (br), or a combination thereof. Coupling constants (J) are quoted to the nearest 0.1 Hz . Low resolution electrospray (ES) mass spectra were recorded on a Bruker Daltonics MicroTof mass spectrometer, run in positive mode. LC-MS analysis and chromatographic separation were conducted with a Brucker Daltonics MicrOTOf mass spectrometer or an Agilent Technologies 1200 series HPLC connected to an Agilent Technologies 6130 quadrupole LC/MS, where both instruments were connected to an Agilent diode array detector. The column used was a Waters XBridge column ( $50 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$ particle size,) and the compounds were eluted with a gradient of 5 to $95 \%$ acetonitrile/water $+0.1 \%$ Ammonia. All final compounds showed chemical purity $\geq 95 \%$ as determined by the UV chromatogram (190-450nm) obtained by LC-MS analysis. Unless otherwise stated herein reactions have not been optimized. Compounds A0012, A0036, A0037 and A0038 were purchased from Enamine and tested without further purification after purity was determined to be $\geq 95 \%$ by integration of the UV chromatogram (190-450nm) obtained by LC-MS analysis.


Conditions: (a) AcOH, EtOH, $90^{\circ} \mathrm{C}$, 1 h 30 min ; (b) $\mathrm{POCl}_{3}, \mathrm{DMF}$, reflux, overnight; (c) $\mathrm{KMnO}_{4}, \mathrm{KOH}$, dioxane/water 4/1; (d) Amine, EDC, HOBt, DIPEA, DMF

Supplementary Figure 6. General synthetic route.

General procedure A: Synthesis of pyrazole-4-aldehydes. To a solution of the methyl ketone (1 eq) and the corresponding hydrazine ( 1 eq ) in ethanol ( $1 \mathrm{~mL} / \mathrm{mmol}$ ), acetic acid ( $1 \mathrm{~mL} / 25 \mathrm{mmol}$ ) was added dropwise at room temperature. Reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h and 30 min . Solvents were removed under reduced pressured and residue partitioned between NaHCO3 saturated aqueous solution ( 50 mL ) and $\mathrm{DCM}\left(250 \mathrm{~mL}\right.$ ). The organic layer was dried over $\mathrm{MgSO}_{4}$ and solvents were removed under reduced pressured. The residue was dissolved in DMF ( 7 mL ) and added to a previously prepared mixture of $\mathrm{POCl}_{3}(2 \mathrm{eq})$ and DMF (2 eq) dropwise in an ice bath. The mixture was stirred at room temperature for 30 min and then refluxed overnight. Reaction was quenched over ice water ( 50 mL ) followed by $2.5 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL}$ ) and extracted with DCM ( 250 mL ). The organic layer was dried over $\mathrm{MgSO}_{4}$ and solvents were removed under reduced pressured to obtain the desire product that was used without further purification.

General procedure B: Oxidation of pyrazole-4-aldehydes. To a solution of the pyrazole-4carbaldehyde (1 eq) in a mixture of dioxane/water $4 / 1(5 \mathrm{~mL} / \mathrm{mmol})$, a solution of $\mathrm{KOH}(1.5 \mathrm{eq})$ in water ( 8 mL ) and $\mathrm{KMnO}_{4}(1.5 \mathrm{eq})$ were added. The reaction mixture was stirred overnight at room temperature. The reaction was quenched with a mixture of hydrogen peroxide/water $1 / 1(10 \mathrm{~mL})$ and filtered through Celite. Solvents were removed and pH was adjusted to pH 3 with 3 NHCl . Precipitate was filtered and washed with water. The product was dried under vacuum and used without further purification.

General procedure C: Synthesis of amides. To a solution of the pyrazoloze-4-carboxylic acid (1 eq) in DMF ( 5 mL ), the corresponding amine ( 1.2 eq ), diisopropylethylamine ( 1.2 eq ), EDC ( 2 eq ) and HOBt ( 2 eq ) were added at room temperature. The reaction mixture was stirred overnight at room temperature. The reaction was partitioned between $\mathrm{NaHCO}_{3}$ saturated aqueous solution ( 10 mL )
and DCM ( $2 \times 25 \mathrm{~mL}$ ). The combined organic layers were dried over $\mathrm{MgSO}_{4}$ and solvents were removed under reduced pressure. The product was purified by column chromatography.

1-Phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxylic acid. Prepared following general procedures $A$ and $B$ starting from 1 2-acetylthiophene ( $1.7 \mathrm{~mL}, 16 \mathrm{mmol}$ ) and phenyl hydrazine ( $1.6 \mathrm{~mL}, 16$ mmol ) to obtain 1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxylic acid as a brown solid (1.3 g, $30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55$ (dd, J=8.0, 8.0 Hz, 2H), $7.40(\mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.17 (dd, J=3.8, 5.0 Hz, 1H). LC-MS (ESI) m/z $271[\mathrm{M}+\mathrm{H}]^{+}$.

N-(1H-benzo[d]imidazol-2-yl)-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxamide (A0034). Prepared following general procedure C starting from 1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4carboxylic acid ( $200 \mathrm{mg}, 0.7 \mathrm{mmol}$ ) and purified by column chromatography using a silica cartridge (12 g) and DCM (A) and $10 \% \mathrm{MeOH}$ in DCM (B) as eluent to obtain $N$-( 1 H -benzo[d]imidazol-2-yl)-1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxamide as a white solid ( $13 \mathrm{mg}, 5 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, ~ D M S O) ~ \delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 3 \mathrm{H})$, $7.49(\mathrm{dd}, \mathrm{J}=3.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 4 \mathrm{H})$. LC-MS (ESI) m/z 386 ( $[\mathrm{M}+\mathrm{H}]^{+}$.

3-Isopropyl-1-phenyl-1H-pyrazole-4-carbaldehyde. Prepared following general procedure $A$ starting from 3-methyl-2-butanone ( $2.2 \mathrm{~mL}, 20 \mathrm{mmol}$ ) and phenyl hydrazine ( 1 eq ) to obtain 3-isopropyl-1-phenyl-1H-pyrazole-4-carbaldehyde as a brown solid ( $0.4 \mathrm{~g}, 10 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 1H), 3.56-3.47(m, 1H), 1.43-1.42 (m, 6H). LC-MS (ESI) m/z $215[\mathrm{M}+\mathrm{H}]^{+}$.

3-Isopropyl-1-phenyl-1H-pyrazole-4-carboxylic acid. Prepared following general procedure B starting from 3-isopropyl-1-phenyl-1H-pyrazole-4-carbaldehyde ( $0.4 \mathrm{~g}, 2 \mathrm{mmol}$ ) to obtain 3-isopropyl-1-phenyl-1H-pyrazole-4-carboxylic acid as a brown solid ( $0.4 \mathrm{~g}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 12.44-12.44(\mathrm{~m}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}$, J=7.4 Hz, 1H), 3.58-3.51 (m, 1H), 1.29 (d, J=6.9 Hz, 6H). LC-MS (ESI) m/z $231[\mathrm{M}+\mathrm{H}]^{+}$.

3-Isopropyl-1-phenyl-N-(pyridin-3-yl)-1H-pyrazole-4-carboxamide (A0039). Prepared following general procedure C starting from 3-isopropyl-1-phenyl-1H-pyrazole-4-carboxylic acid ( $158 \mathrm{mg}, 0.7$
mmol ) and purified by column chromatography using a silica cartridge (12 g) and DCM (A) and 10\% $\mathrm{NH}_{3}-\mathrm{MeOH}$ in $\mathrm{DCM}(\mathrm{B})$ as eluent to obtain 3-isopropyl-1-phenyl-N-(pyridin-3-yl)-1H-pyrazole-4carboxamide as a white solid ( $149 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.07$ (s, 1H), 9.07 $(\mathrm{s}, 1 \mathrm{H}), 8.86(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, \mathrm{J}=1.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.59-7.55 (m, 2H), 7.41-7.36(m, 2H), 3.65-3.56(m, 1H), $1.32(d, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. LC-MS (ESI) $\mathrm{m} / \mathrm{z}$ $307[\mathrm{M}+\mathrm{H}]^{+}$.

3-Methyl-1-phenyl-1H-pyrazole-4-carbaldehyde. Prepared following general procedure A starting from acetone ( $1.5 \mathrm{~mL}, 20 \mathrm{mmol}$ ) and phenyl hydrazine (1 eq) to obtain 3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde as a brown solid (1.3 g, $35 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.00(\mathrm{~s}$, $1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$. LCMS (ESI) m/z $187[\mathrm{M}+\mathrm{H}]^{+}$.

3-Methyl-1-phenyl-1H-pyrazole-4-carboxylic acid. Prepared following general procedure B starting from 3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (1.4 g, 7.2 mmol ) to obtain 3-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid as a brown solid ( $0.8 \mathrm{~g}, 56 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H})$. LC-MS (ESI) $m / z 203[\mathrm{M}+\mathrm{H}]^{+}$.

3-Methyl-1-phenyl-N-(pyridin-3-yl)-1H-pyrazole-4-carboxamide (A0040). Prepared following general procedure $C$ starting from 3-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid (139 mg, 0.7 mmol ) and purified by column chromatography using a silica cartridge ( 12 g ) and DCM (A) and 10\% $\mathrm{NH}_{3}-\mathrm{MeOH}$ in $\mathrm{DCM}(B)$ as eluent to obtain 3-methyl-1-phenyl- N -(pyridin-3-yl)-1H-pyrazole-4carboxamide as a white solid ( $78 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~s}$, 1 H ), 9.68 (d, J=2.4 Hz, 1H), 9.11 (dd, J=1.3, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.96 (A, J=1.5, 2.6, 8.3 Hz, 1H), 8.63 (d, J=7.6 $\mathrm{Hz}, 2 \mathrm{H}), 8.40-8.36(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 279[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Formyl-3-(pyridin-3-yl)-1H-pyrazol-1-yl)benzonitrile. Prepared following general procedure A starting from 2-acetylpyridine ( $1.8 \mathrm{~mL}, 16 \mathrm{mmol}$ ) and 4-cyanophenyl hydrazine hydrochloride (1 eq) to obtain 4-(4-formyl-3-(pyridin-3-yl)-1H-pyrazol-1-yl)benzonitrile as an off-white solid (2.4g, 55 \% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70$ (dd, J=1.7,
$4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=5.2,7.6 \mathrm{~Hz}$, 1H). LC-MS (ESI) $m / z 275[\mathrm{M}+\mathrm{H}]^{+}$.

1-(4-Cyanophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid. Prepared following general procedure $B$ starting from 4-(4-formyl-3-(pyridin-3-yl)-1H-pyrazol-1-yl)benzonitrile (2.4 g, 8.7 mmol ) to obtain 1-(4-cyanophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid as an off-white solid (2.1 g, 85\% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 9.35(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.86(d, J=8.2 H z, 1 H), 8.25(d, J=9.0 H z, 2 H), 8.07-8.00(m, 3 H) . L C-M S(E S I) m / z 291[M+H]^{+}$.

## $N$-(1H-Benzo[d]imidazol-2-yl)-1-(4-cyanophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxamide

(A0041). Prepared following general procedure C starting from 1-(4-cyanophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid ( $199 \mathrm{mg}, 0.7 \mathrm{mmol}$ ) and purified by column chromatography using a silica cartridge ( 4 g ) and $\mathrm{DCM}(\mathrm{A})$ and $20 \% \mathrm{NH}_{3}-\mathrm{MeOH}$ in $\mathrm{DCM}(B)$ as eluent to obtain N -(1H-benzo[d]imidazol-2-yl)-1-(4-cyanophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxamide as a white solid ( $60 \mathrm{mg}, 21 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 9.49$ (s, 1H), 9.05 (d, J=2.2 Hz, 1H), 8.65 (dd, $J=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H})$, 7.48-7.44 (m, 2H), 7.14-7.11 (m, 2H). LC-MS (ESI) m/z $406[\mathrm{M}+\mathrm{H}]^{+}$.

1-(4-Fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carbaldehyde. Prepared following general procedure A starting from 2-acetylpyridine ( $1.8 \mathrm{~mL}, 16 \mathrm{mmol}$ ) and 4-fluorophenyl hydrazine hydrochloride (1 eq) to obtain 1-(4-fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carbaldehyde as an off-white solid (1.3 g, $36 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.74(\mathrm{dd}, \mathrm{J}=1.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=4.9,7.1$ Hz, 1H), 7.29-7.24 (m, 2H). LC-MS (ESI) $m / z 268[\mathrm{M}+\mathrm{H}]^{+}$.

1-(4-Fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid. Prepared following general procedure B starting from 1-(4-fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carbaldehyde (1.3 g, 4.9 mmol ) to obtain 1-(4-fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid as an offwhite solid ( $1.3 \mathrm{~g}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.84$ (d, J=1.6 $\mathrm{Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=5.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=8.8,8.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ). LC-MS (ESI) $m / z 284[\mathrm{M}+\mathrm{H}]^{+}$.

## $N$-(1H-Benzo[d]imidazol-2-yl)-1-(4-fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxamide

(A0042). Prepared following general procedure C starting from 1-(4-fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (195mg, 0.7 mmol ) and purified by column chromatography using a silica cartridge ( 4 g ) and $\operatorname{DCM}(A)$ and $20 \% \mathrm{NH}_{3}-\mathrm{MeOH}$ in $\mathrm{DCM}(B)$ as eluent to obtain $\mathrm{N}-(1 \mathrm{H}-$ benzo[d]imidazol-2-yl)-1-(4-fluorophenyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxamide as an offwhite solid ( $18 \mathrm{mg}, 7 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ) $\delta 9.03(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.48$ (d, J=3.6 Hz, 1H), 8.33 (d, J=8.0 Hz, 1H), 7.84-7.80(m, 2H), 7.47-7.42 (m, 3H), $7.25(\mathrm{dd}, \mathrm{J}=8.7,8.7$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.19 (dd, J=3.1, $5.9 \mathrm{~Hz}, 2 \mathrm{H}$ ). LC-MS (ESI) $m / z 399[\mathrm{M}+\mathrm{H}]^{+}$.

1-(tert-Butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carbaldehyde. Prepared following general procedure A starting from 2-acetylpyridine ( $1.8 \mathrm{~mL}, 16 \mathrm{mmol}$ ) and tert-butyl hydrazine hydrochloride (1 eq) to obtain 1-(tert-butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carbaldehyde as an off-white solid (1.9 g, 49 \% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{dd}, \mathrm{J}=1.3,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=5.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H})$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 230[\mathrm{M}+\mathrm{H}]^{+}$.

1-(tert-Butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid. Prepared following general procedure B starting from 1-(tert-butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carbaldehyde (1.9 g, 8.1 mmol ) to obtain 1-(tert-butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid as an off-white solid (1.2 g, 60\% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 12.46-12.45(\mathrm{~m}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, \mathrm{J}=1.4,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}=5.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H})$. LC-MS (ESI) m/z $246[\mathrm{M}+\mathrm{H}]^{+}$.
$N$-(1H-Benzo[d]imidazol-2-yl)-1-(tert-butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxamide (A0043). Prepared following general procedure C starting from 1-(tert-butyl)-3-(pyridin-3-yl)-1H-pyrazole-4carboxylic acid ( $169 \mathrm{mg}, 0.7 \mathrm{mmol}$ ) and purified by column chromatography using a silica cartridge ( 4 g ) and $\mathrm{DCM}(\mathrm{A})$ and $20 \% \mathrm{NH}_{3}-\mathrm{MeOH}$ in DCM (B) as eluent to obtain N -(1H-benzo[d]imidazol-2-yl)-1-(tert-butyl)-3-(pyridin-3-yl)-1H-pyrazole-4-carboxamide as a white solid ( $37 \mathrm{mg}, 15 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD) $\delta 8.96(d, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.51$ (dd, J=1.6, 4.9 Hz, 1H), 8.28 - 8.24 (m, 1H), 7.46 (dd, J=4.9, 7.9 Hz, 1H), $7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H})$. LC-MS (ESI) $m / z 361[\mathrm{M}+\mathrm{H}]^{+}$.

1-Methyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbaldehyde. Prepared following general procedure A starting from 2-acetylthiophene ( $1.7 \mathrm{~mL}, 16 \mathrm{mmol}$ ) and methyl hydrazine (1 eq) to obtain 1-methyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbaldehyde as a brown oil ( $2.4 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{td}, \mathrm{J}=1.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, \mathrm{J}=1.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11$ (m, 1H), 3.96 (s, 3H). LC-MS (ESI) $m / z 193[\mathrm{M}+\mathrm{H}]^{+}$.

1-Methyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxylic acid. Prepared following general procedure $B$ starting from 1-methyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbaldehyde ( $2.4 \mathrm{~g}, 13 \mathrm{mmol}$ ) to obtain 1-methyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxylic acid as a yellow solid (1.2 g, 48\% yield). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 12.43-12.43(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{dd}, \mathrm{J}=1.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=1.1$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=3.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 209[\mathrm{M}+\mathrm{H}]^{+}$.

1-Methyl-N-(pyridin-3-yl)-3-(thiophen-2-yl)-1H-pyrazole-4-carboxamide (A0044). Prepared following general procedure C starting from 1-methyl-3-(thiophen-2-yl)-1H-pyrazole-4-carboxylic acid ( $143 \mathrm{mg}, 0.7 \mathrm{mmol}$ ) and purified by column chromatography using a silica cartridge ( 12 g ) and DCM (A) and $10 \% \mathrm{MeOH}$ in DCM (B) as eluent to obtain as a white solid ( $43 \mathrm{mg}, \mathrm{xx} \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.52$ - $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=3.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LC}-\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 285[\mathrm{M}+\mathrm{H}]^{+}$.

