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A Data and Likelihood function

The hut experiment data from [1] contains the percentages of exited, blood-
fed and dead mosquitoes for each chemical tested. The results were collected
for the mosquito species: An. gambiae and An. arabiensis. The outcomes
in each case were averaged over six repetitions of the experiment, in order to
reduce the uncertainty attributed to the differences in an individual host’s
attractiveness. The data and the 95% confidence intervals are shown below
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Figure S1: Summary of data from [1] for several insecticidal treatments. Per-
centages of (a) blood-feed, (b) exited (c) insecticide-induced mortality rates
of different mosquitoes. The black bars indicate 95% confidence intervals.

The simulated and the experimental data are compared using the sum of
squares cost function, see Equation S1. The likelihood is assumed to be
Gaussian, due to repeated measurements. Uninformative uniform priors are
chosen for sampling in all the cases considered, since no prior estimate of the
parameters is available. The likelihood is sampled using adaptive MCMC
from [2] to approximate the posterior distribution of the model parameters,
i.e., to determine how well the available data can identify them. The sampled
parameter sets represent the model evaluations that produce values within
the noise level of the data. The sum of squared difference between the ob-
servations and the model outputs (the negative log-likelihood) is given by

Ssum =
Nr∑
i=1

(Yi − Ŷi)2

σ2
i

. (S1)

The standard deviations are chosen so as to agree with the confidence inter-
vals shown in Fig. S1. Here, Nr = 6 gives the number of measured responses,
the exit, fed and mortality rate each for the two species of mosquitoes consid-
ered. It should be noted that the data from [1] (see Fig. S1)is relative so the
size of the mosquito swarm used in the simulations can be chosen by numer-
ical efficiency. Since the model is stochastic, all the results are averaged over
multiple repetitions. The combination of 6 repetitions and a swarm of 600
mosquitoes turned out to result in a reasonably small variance at a minimal
CPU time. The total wall-clock time for one evaluation of the cost function,
using parallel GPU calculations, was approximately 2 seconds as performed
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on a CPU core-i7 2500K, GPU GetForce GTX TITAN.

B Model calibration

The model parameters are calibrated against data on behavioural differences
in host-seeking of An. gambiae and An. arabiensis upon confrontation with
ITN/LLIN, using extensive MCMC (Markov chain Monte Carlo) simulations.

In a preliminary step, the distribution of two parameters, the probability of
penetration through the net, 1−pnet, and probability of exiting from the hut,
phut, were sampled by data from control tests using nets without chemicals.

All the chemical treatments considered have a short spatial range of ac-
tion (approximately 10cm), which is modelled by the value of the param-
eter s representing the spatial spread of the chemical. This value is kept
fixed in the simulations. The rest of the parameters; those defining the net
repellent, insecticide-induced death rate and insecticide-induced exit rate,
r, αG, αA, µ

G
e , µ

A
e , are sampled by MCMC. Most of the parameters are iden-

tified rather well. Some of the parameters were not accurately identified
in preliminary samples. However, despite the uncertainties in the parameter
distributions, the overall behaviour of the model still remains statistically the
same. It appears that these parameters do not impact much on the model,
and they could hence be fixed. The calibration results is presented for only
one chemical Alphacypermethrin, other results are available upon request.

The model calibration results overall show a good fit to the response mea-
surements, and the variability of the simulated model outputs match with
the error bars of the measurement. The fit is evident in Fig. S2, where the
blue lines denote the error bounds of the actual measurement, depicted by
the black constant line. The pairwise correlation plots (see Fig. S3) mostly
do not reveal any consistent correlation between the sampled parameters. On
the other hand, for Alphacypermethrin, the chemical repulsion parameter is
strongly inversely proportional to the detoxification rate for An. gambiae,
while no similar relation is revealed in the case of An. arabiensis. This may
be because Alphacypermethrin features a low blood-feeding rate with high
exit for An. gambiae, so that, given a fixed period before the exit (by fixing
parameter µG), the chemical is either highly repulsive and moderately detox-
ified (high r and low αG), or alternatively, subject to intensive detoxification
but lower repulsion (low r and high αG), which results in a similar mortality
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rate, since the total accumulated dosage is similar in these two cases. The
mortality rate for An. gambiae with Alphacypermethrin produced with the
sampled values of parameters displays a high variation from the sampled
mean of the model output, which in some cases is even comparable with that
of An. arabiensis. However, the mean values of the model outputs are all
within the confidence bounds.

Figure S2: Results of MCMC model calibration with experimental data re-
ported in [1], where LLIN is impregnated with Alphacypermethrin. Model
outputs obtained using a posterior distributions of parameters (blue trace
lines) versus the data (mean values in red solid and 95 % confidence intervals
in red dashed lines).
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Figure S3: Results of MCMC model calibration with experimental data re-
ported in [1], where the LLIN is impregnated with Alphacypermethrin. (a)
Parameter chains and (b) Pairwise marginal posterior distributions of model
parameters.

C Regression Analysis, contact and mortality
rates

The ABM model was calibrated for the situation with one person in hut.
However, the simulations can be performed for several persons in one house-
hold, or a given number of people divided in households of different sizes.
A few additional assumptions, based on literature, further allow to approxi-
mate the impact of complex phenomena such as how the parasite changes the
behaviour of the vector. The simulations are performed under different frac-
tions of the hosts covered by the LLINS, using different chemicals. Repeated
randomized simulation experiments provide data from which the overall im-
pact of such factors can be extracted by regression analysis. Especially, the
interest is in the biting rates and mosquito mortality, as they appear to be
the key coefficients in continuous-level compartmental models.
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Fig. S4 shows simulated contact rates for both uninfected ã and infected ā
mosquitoes, when the LLIN coverage ranges from 0 to 100 %, for household
sizes from 2 to 10 persons. Logistic functions are fitted to the data.

Figure S4: Simulation data from ABM for the contact rates for unin-
fected (solid lines) and infected, with behavioural alterations, (dashed lines)
mosquitoes for different household sizes: 2 (dark green) , 4 (green), 6 (yel-
low), 8 (dark yellow) and 10 (red) people, forAn. gambiae and LLIN treated
with Carbosulphan. Diamonds and dots denote repeated simulation results
for each pair of household size and coverage averaged (solid and dashed lines)
over 7 repetitions for infected and uninfected mosquitoes

Unlike the contact rates, the mortality rates are estimated to be dependent
only on the LLIN coverage. The regression is conducted in both cases: when
assuming no behavioural alterations and when considering alterations caused
by the parasite, separately for An. gambiae and An. arabiensis when con-
fronted with each of the chemical treatments considered. Mortality rates are
fitted with a second degree polynomial with respect to the LLIN coverage.
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Figure S5: Simulation data from ABM for the mortality rates forAn. gambiae
and LLIN treated with Carbosulphan, conditioned on the coverage when
assuming no behavioural alterations by parasite: 7 repetitions for each pair of
household size and coverage (dots) and the rates averaged over the repetitions
(solid lines).

D Extension for continuous time

Here the dependence of EIR on the LLIN coverage and household size is
presented. Fig. S6 suggests that the coverage required to achieve similar
reduction in the number of infectious contacts is higher for An. arabiensis
than An. gambiae for all of the chemicals, except IconMaxx. The difference
is more noticeable for high household sizes. The surfaces are plotted for the
case of behavioural alterations in mosquitoes. However, they are qualitatively
similar to the case of no alterations, but the absolute values of EIR are lower
in the latter, as can be seen from the predictive distribution (see Fig. 8 of
the main text).

Further, the equilibrium EIR and malaria prevalence are compared for both
An. gambiae and An. arabiensis (see Fig. S7). It can be seen from the plots
in Fig. S7 that the level of coverage required for total elimination of the
disease is consistently higher in the case of behavioural alterations induced
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by the parasite. Additionally, the values for both the EIR and i∗h are lower
for An. gambiae than An. arabiensis for the same rate of coverage. This can
be attributed to the fact that An. gambiae is more susceptible to chemical
influence than An. arabiensis.

Comparing the mortality rates with the equilibrium fractions of infected
mosquitoes i∗v, it can be seen from Fig. 5 of the main text and Fig. S7
(e and f), that higher chemical toxicity entails lower equilibrium proportion
of infected mosquitoes. Carbonsulphan for instance, being the most toxic
chemical for An. gambiae, correspondingly features a lower equilibrium pro-
portion of infected mosquitoes. The same scenario is virtually applicable
to all other chemicals and for An. arabiensis. Again, as can be seen from
Fig. S7, EIR displays a substantial decrease with increase in LLIN coverage,
which occurs due to increasing mortality, whereas i∗h starts to decrease only
after a certain threshold coverage. This latter tendency can be traced to the
mechanism inherent in Equation 17 (from the main text), which suggests
that a drastic reduction in malaria prevalence occurs only when the number
of infectious bites per human per time unit (which essentially comprises the
EIR) decreases below the threshold of 1 [3].

(a) (b)
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(e) (f)

(g) (h)
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Figure S6: Predicted equilibrium EIR conditioned on household size and
the fraction of LLIN coverage for An. gambiae and An. arabiensis when
confronted with each of the chemicals considered in the study. The response
surfaces are given for the case of behavioural alterations for the parameter
set and mosquito density corresponding to high transmission setting, for the
following combinations of chemicals and mosquito species: (a) Carbosulphan
and An. gambiae, (b) Carbosulphan and An. arabiensis, (c) Deltamethrin
and An. gambiae, (d) Deltamethrin and An. arabiensis,(e) IconMaxx and
An. gambiae, (f) IconMaxx and An. arabiensis, (g) Alphacypermethrin and
An. gambiae, (h) Alphacypermethrin and An. arabiensis

(a) (b)

(c) (d)
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(e) (f)

Figure S7: Equilibrium values of Entomological Inoculation Rate (EIR),
malaria prevalence i∗h (fraction of infected humans) and fraction of infected
mosquitoes conditioned on the partial coverage of LLIN (pLLIN) for An.
gambiae and An. arabiensis when confronted with the chemicals under study
for the parameter set and mosquito density corresponding to high transmis-
sion setting: (a) EIR in the case of no behavioural alterations; (b) EIR in
the case of behavioural alterations; (c) i∗h in the case of no behavioural alter-
ations; and (d) i∗h in the case of behavioural alterations (e) i∗m in the case of
no behavioural alterations; and (f) i∗m in the case of behavioural alterations.

E ODD PROTOCOL

Here, the discussion of how the ABM simulations were done and how the
observed results emerge, together with their impact on the regression analysis
done in Sections C and D, is presented.

E.1 Purpose and patterns

E.1.1 Purpose

The purpose of the model is to provide data reflecting the impact of various
complex factors affecting malaria such as household size, LLIN coverage, and
alterations in mosquito behaviour induced by malaria parasite, in the form
that can be directly used by the continuous models of malaria. Thus, the
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ABM simulations is used as a ’computational laboratory’ where data can
be produced for regression analysis, so as to enable the calibration of the
key parameters of classical malaria models. In considering these factors, the
modelling of a single host in the hut is done, followed by the household level
modelling, with multiple individuals sleeping under the same roof. Subse-
quently, the household-level model is extended to community-level scenarios,
enabling simulations of heterogeneity of mosquito-to-human contact rates
due to partial coverage with nets or different household sizes.

E.1.2 Pattern

The hut-level simulations are data driven as they aim to reproduce the pat-
terns of the data employed from [1]. In the community-level case, since there
is no data to calibrate the simulations, the literature values are employed and
a sensitivity analysis is conducted based on these values to ascertain how the
assumed parameter values impact the overall outcomes. See Table S2.

E.2 Entities, state variables, and scales

E.2.1 Entities

The entities in the model include humans, mosquitoes, nets and chemicals.
Humans are modelled as individual agents, attributed with the state of infec-
tion, the use of insecticidal nets and spatial position. Humans do not carry
out any actions and their features are constant in time. This is because the
main focus of the model is to control the mosquito population. Two female
mosquito species were employed: An. gambiae and An. Arabiensis. Given
that only female mosquitoes transmit the parasite during blood-feeding, and
mating is outside the scope of this project, the ABM simulations do not in-
clude the male mosquitoes. The difference of the species is attributed by
their host-seeking behaviours (anthropophilic or opportunistic preferences of
mosquitoes) when confronted with the insecticidal nets. The mosquitoes can
either be infected or uninfected. The infected mosquitoes differ from the
uninfected ones in terms of their biting habit. The number of infectious
mosquitoes is constant for a single experiment. This is because, it takes a
period of 10 to 12 days for parasites to reach a stage whereby they are ready
for transmission whereas the ABM simulation in this study is only for a night.

12



Insecticidal nets of 1.5m width, treated with four different chemicals: Car-
bonsulfan, Iconmax, Alphacypermethrin and Deltamethrin, are simulated.
The difference between these chemicals is represented by their impact (in
terms of contact irritancy, excito-repellency and poisoning) on each of the
mosquito species under study. Considering that some of the bed nets used in
rural communities are typically holed in a practical way, purposely holed nets
are widely used in hut trials [4]. Therefore, broken nets are simulated in such
a way that the likelihood of mosquito penetration is non-zero. For the hut-
level case, the human agent is always covered with the net. But at household
and community levels, the number of protected humans can vary from 20 to
100% and remains constant throughout the simulation. Additionally, a hut
barrier (walls) is simulated for each of the huts. In the hut-level experiment,
the walls have window traps from-which mosquitoes can exit (see [1]). In the
community-level experiment, a usual human dwelling is modelled.

E.2.2 State variables

For each of the mosquito agents, properties are individually assigned and
updated within the simulation (see Table S1).

Table S1: Property list of each agent and the relevant model component.

Property Model component Type
Spatial position Motion Set of coordinates
Inside/Outside the hut Motion Binary
Inside/Outside the net Motion Binary
Trapped Motion Binary
CO2 concentration Motion Float
Fed Host-seeking Binary
Time indoors Host-seeking Integer
Klinotaxis Host-seeking Binary
Dead Death (Poisoning) Binary
Accumulated dosage of chemical Poisoning Float

E.2.3 Scale

Hut scale The mosquitoes are initially represented in the simulations as
a number of agents in a rectangular patch of 3m (which is a typical experi-
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mental hut-size [5]) at uniformly random spatial positions.

Community scale In the community-level simulations, mosquitoes are
randomly positioned inside the simulated transmission domain of 25600 m2

size with multiple households located at a distance not less than 40 m from
each other so that there is no competitive attraction caused by vision [6].
The hut-size for the household-case is 13 m.

Time scale The ABM simulations cover a period of one night (10 hours)
plus a 24-hour additional delayed mortality. Each calculation simulates an
experiment of 34 hours.

E.3 Process overview and scheduling

E.3.1 Processes

The model describes and calibrates mosquito’s responses and behaviours
based on four basic components: motion, host-seeking, poisoning and death
(see Table S2), where each of the components has a number of related fea-
tures. The movement and host-seeking behavior of the mosquito is governed
by an attraction model, based on the assumption that a mosquito estimates
the direction of odour increase (the gradient) from the host via the klino-
taxis mechanism [7]. As the mosquito approaches the host, the likelihood
of accepting steps away from the host reduces (see Fig. S10b). The current
spatial position of the mosquito is updated at every time step.

Apart from the physical material barrier posed by the insecticidal nets, they
are also equipped with poisoning and repellent effects. A mosquito is said to
be exposed to the poison upon contact with the net surface (see [8]). Again,
the explanation of detoxification is considered, that the chemical concentra-
tion accumulated in mosquito body is exponentially decaying with a rate
which is dependent on both the chemical and mosquito species [9], [10]. The
total accumulated dosage of poison which depends on the number of contacts
with the net and the detoxification rate, is updated for every mosquito at
each time step, and determines their probability of death. Additionally, the
delayed mortality that is as a result of the prolonged impact of poison in
mosquitoes, is accounted for. If mosquito is marked as dead, the mosquito is

14



removed from the simulation such that no properties of the mosquitoes are
updated again. The repulsion effect amplifies as the mosquito approaches
the source of repellent (see Fig. S11). This repulsion effect influences the
mosquitoes decision of approaching the host and can induce early exit from
the hut. If a mosquito exits, no other property of such mosquito is updated
in the simulation except for their mortality status which is updated after 10
hours, and tracked for 24 hours. This is because the delayed lethal action of
the chemical is assumed to start after the 10 hours in the hut.

A mosquito is scored as fed if it penetrates through the net and its updated
position is very close to the host (a minimal distance ε between a mosquito
and the host is defined). In the hut-level case, a mosquito can take only one
bite since there is only one human. But in the household and community-
level case, the mosquito can take several bites; in this case, up to 5 bites.
In household and community-level simulations, the tendency of mosquitoes
to switch to neighboring individuals after spending a certain period of time
in unsuccessful attempts to feed on a protected human, is also considered.
Hence, in any case, The mosquito switches to a pure random walk, without
any control of attractive odor, if the maximum number of bites is reached or
if the maximum time a mosquito can spend on host-seeking is used up. Nev-
ertheless, the barriers raised by the net and the repellent effect alongside the
effect of chemical poisoning remains functional under this condition. For all
mosquitoes that are inside the hut and are not dead or exited, the time spent
indoors are updated at each time step. In community-level case, if mosquito
consumes an insufficient amount of blood before exiting the household, the
mosquito begins the host-seeking process from the outset, except that the
abandoned household is not accounted for when the total concentration of
the CO2 is computed. Additionally, it is also assumed that the host-seeking
time count is reinitialized after entering a new household. See Fig. S8 for a
diagrammatic explanation of the above discussed processes.

E.3.2 Schedule

The update of the property list of mosquitoes happen at the same time after
each time step. One iteration step in the simulation corresponds to 2 seconds.
The basic algorithm for the execution is given in item E.1.
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Table S2: Modelled processes

Model component Attributes Definition
Host-seeking

· CO2 concentration, Klinotaxis Equation S3
· Distance-dependent attraction Equation S5
· Host seeking time

Motion
· Random walk, accept/reject steps Equation S4
· Excito-repellency Equation S11

Poisoning
· Accumulation of the chemical dosage Equation S7
· Detoxification Equation S8

Death
· Natural mortality Equation S6
· Insecticide-induced mortality Equation S9
· Delayed mortality Equation S6

with model
extension
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Algorithm E.1 Model algorithm

1. Propose candidate position xn by adding a stochastic increment to
the previous position, i.e., compute xn by Equation S2;

2. Account for natural mortality. Generate random number u ∼ U [0, 1].
Remove the agent if u < α∆t;

3. Account for insecticide-induced mortality. Generate random number
u ∼ U [0, 1]. Remove the agent if u < α∆t

p ;

4. Evaluate the CO2 concentration C(xn) at new position xn as given
in Equation S3;

5. Compute the scaling factor σacc(xn) as given by Equation S5;

6. Recalculate the scaling factor, while considering the excito-repellency,
conditioned on the amount of accumulated chemical by Equation S11;

7. Compute probability of acceptance by attraction, αa(x
n|xn−1) for po-

sition xn by Equation S4;

8. Compute the probability of rejection αrej resulting from repellent
αr(x

n|dp, s) by Equation S10;

9. Generate random number u ∼ U [0, 1], if u < min
{

1, αa(1 − αr)
}
,

mark position xn as preliminarily accepted, otherwise, mark position
as rejected and remain at the old position xn = xn−1;

10. Account for the physical net barrier. If candidate step xn is inside and
old position xn−1 is outside of the net, and position xn was prelimi-
narily accepted, generate random number u. If u < 1 − pnet, accept
the new position xn. Otherwise, select the closest point on the net
xnet to xn−1 and assign new position xn = xnet ;

11. Account for the wall barrier. If candidate step xn is outside and old
position xn−1 is inside of the hut and position xn was preliminarily
accepted, generate random number u. If u < phut, accept the new
position xn. Otherwise, chose closest point on the wall xwall to xn−1

and assign new position xn = xwall ;

12. Update the total accumulated chemical dosage Ctot by Equation S8;

13. Account for detoxification of the total accumulated chemical dosage
Ctot with the rate α;

14. Update the property list of mosquito;

15. Move to step 1, n→ n+ 1
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Figure S8: A decision tree showing the key features of the ABM algorithm
of mosquito host-seeking actions in the presence of the LLINs introduced in
[11]. Here, some of the choices are probabilistic, depending on the state of the
agent. pdeath denotes the probability of death, pnet stands for the probability
of being blocked by the physical net barrier, pattr denotes the probability of
accepting the proposed step, prej stands for the probability of rejecting the
proposed step due to the repellent effect.
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E.4 Design concepts

E.4.1 Basic principles

Mosquito movement and attraction model The mosquito attraction
model is based on the assumption that a mosquito estimates the direction of
odour increase (the gradient) from the host via the klinotaxis mechanism [7].
During this plume-tracking activity, the mosquito samples the host odour at
one location, changes location and then repeats the sampling, and uses its
memory of the concentrations previously observed to select the next position
[12],[13]. In the present work, the space is continuous, and the movement
of mosquitoes is guided based on Euclidean distances to the humans and
households. In the absence of the sensory signals, the movement of mosquito
constitutes pure random walk, which is typical for the ABMs that include
animal navigation, ([14]). Imitating this mechanism, flight of mosquitoes is
modelled as a discrete-time correlated random walk. However, when there
are attraction effects, sufficiently close for sensing the host, the main fea-
tures of the Metropolis algorithm are employed to simulate the random walk
directionally biased by attraction [15]. The Metropolis algorithm features
an accept/reject movement. After a random candidate position is proposed
by the Brownian motion, the probability of accepting the new position for a
given agent is defined to favour candidate steps taken in the direction of in-
creasing concentration of CO2, i.e., towards the attraction source, (see [15]).
In addition, the acceptance probability is also influenced by the presence of
treated nets and the barrier imposed by the walls in human dwelling. These
effects are incorporated by a rejection function. The concentration of attrac-
tive odour and the area covered by the odour is modelled using the diffusion
equation solution, taking into account only the diffusive spread of the odour.
The effect of wind is ignored for simplicity. Thus, the region of high odor con-
centration may be assumed to be a specific location where the host is located
and the maximum distance at which the mosquito is able to detect the host,
is seen as the region of low concentration. This is consistent with the prin-
ciple of the diffusion equation that describes the expel of the flow of certain
quantities (intensity, temperature) over space [16].Therefore, the Gaussian
Kernel centered around the host’s spatial location is used. Naturally, when
other significant factors influencing the dispersion of mosquitoes are taken
into account, the concentration may be defined in a different way, such as us-
ing advection-reaction-diffusion equations, which includes the flow of air and
intermittent concentration plumes etc.,(see [13]). The concentration that
allows mosquitoes to sense humans in the household and community-level
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case, is calculated similarly to the case of a single person, i.e. as a Gaus-
sian, with the argument given by a weighted sum of the individual distances
from the position of the mosquito to the location of each of the hosts . The
total attracting concentration is based on the principle of the function soft-
max, which has been widely implemented in machine learning and neural
networks, (see [17], [18]). The weight Wn is added to account for the fact
that, depending on the mosquito species, the response of a mosquito to the
cue emitted from households increases at a short distance of 5-15 m due to its
attraction to visually conspicuous objects [6], [19], [20]. The key emphasis
here is on the nearest target concept, which basically implies that factors
other than just CO2 alone often cause the mosquito to localize the search
at a short distance, as stated in [6], [19], [20]. Non-normalized weights are
applied inversely proportional to the distance following this rationale. Note
that the community-scale model’s form of concentration is consistent with
the evidence that larger agglomerates emit stronger odors, thus attracting
more mosquitoes [13] (see the illustration in Fig. S9).

(a) (b)

Figure S9: Softmax function in a special case of two households. The first
household includes 6 individuals (located (0,0)) and the other household con-
sists of 2 individuals (located at (0,45)) for different values of d50 and s (a)
2D plot, (b) 1D plot along the y axis

Moreso, the increased mosquito greediness, as a result of activation of the
heat sensors at a short distance to the host is accounted for by using a linearly
distance-dependent scaling factor.The scaling factor’s functional behavior re-
sults in such a movement that steps in the concentration plume taken towards
the host, are always accepted (see Fig. S10a). The design of the algorithm
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basically resembles a well-know Simulated Annealing optimization method,
introduced in [21]. The difference here is that the ’annealing temperature
schedule’ is replaced with the ’greediness scale’, which is associated to the
distance from mosquito to the host. In addition, the scaling factor is further
defined in such a way that it depends not only on the distance to the host,
but also on the repellent effect. This extension was done to fit the exit rates
properly. The scaling factor is computed in the community-level case with
distance to the nearest hut, perceived as the nearest visible feature.

Figure S10: Average probability of accepting candidate steps taken away
from the host; as a function of distance from the host.

Mosquito poisoning and mortality model In this work, both natural
and insecticide-induced mortality are considered in the model. At the onset,
when mosquito has not yet taken the poisonous chemical, the death rate is
reduced to the natural mortality. As the dosage of the chemical gradually
increases in mosquito, the chemical-induced death occurs from the lethal in-
secticide dosage. In continuous time, the natural mortality in a declining
population is commonly modeled by means of an ordinary differential equa-
tion. Here, the continuous-time mortality rate is transformed into probability
of death per unit time. This is achieved by discretization in time leading to
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agent-based rules rather than the rates. The insecticidal induced mortality is
modelled using the total accumulated dosage with effective poisoning impact
obtained by a scaling coefficient which depends on the given insecticide used
for LLIN treatment. So the total probability of death per unit change in
time is modelled as the sum of natural and insecticide-induced mortality.

Repellent model The influence of spatial repellent is imitated by con-
ducting the accept/reject method, with the rejection probability defined by
logistic equation. The logistic function is used to describe certain kinds of
growth rate that have an S-shaped behaviour. At first, this function grows
exponentially, but eventually grow more slowly and levels off, due to cer-
tain restrictions. In order to model the repellent effect caused by the net,
the function was therefore modified so that the rejection probability at the
candidate position attenuates as the distance to the host increases (see Fig.
S11).

Figure S11: Probability of rejection associated with repellents for different
values of the spatial range of repellents.
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E.4.2 Emergence

The model behaviour and outputs emerge from the implicit structure of the
model.

Hut level In the hut-level case, the impact of LLIN is calibrated by data [1].
Two different model parameterization versions were selected to test various
hypotheses explaining the different host-seeking behavior of the species. Both
model calibrations gave same overall results for the impact of LLINs. Thus
the impact of LLINs is emerging by data and not by the specific hypothesis
imposed in the model calibrations (see [11] for more details).

Community level In the community level, the uncertainty from sampled
parameters at hut-level is included and a sensitivity analysis with respect to
the assumed parameters is conducted using a central composite design. The
sensitivity analysis shows that the behavior of the system remains more or
less the same with reasonable perturbations in the assumed parameter values
(see Fig. S12).

(a) (b)

Figure S12: Uncertainty from the sampled parameters at hut level together
with the variability of the community-level assumed parameters for (a) mor-
tality rate (b) fed rate, of An. gambiae when confronted with LLIN impreg-
nated with an Alphacypermethrin treatment kit, fitted with respect to partial
coverage of LLIN for the household size of 2 when assuming no behavioural
alterations caused by the parasite.
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E.4.3 Adaptation

In the mosquito host-seeking behavior presented in this work, there is as at-
tractive potential (CO2 emitted by human) driving the mosquito movement.
This makes the mosquito to make more directional movement towards the
host and can hardly accept steps away from the host. This potential is given
as a solution of the diffusion equation with a point source specified as the
Gaussian Kernel centered at a spatial location of the host. This behavior
does not change with time and the same set of rules applies regardless of
the status of the agent. Additionally, the increased mosquito greediness, as
a result of activation of the heat sensors at a short distance to the host is
accounted for by adding a linearly distance-dependent scaling factor.

Also, there is a repulsive force that is regarded as contact irritancy introduced
by the LLINs impregnated with chemicals. The repulsive force can induce
early exit from the hut. This effect is generated by a rejection probability of a
new position, conditioned on the presence of chemicals. In general, different
mosquito behaviors were observed when confronted with each of the chemical
treatments under study.

E.4.4 Objectives

There is no individual success or objectives that agents work towards except
the general interest to obtain a full blood-meal. They stick to an “indirect
objective seeking”, in which they simply follow the rules that reproduce ob-
served behavior.

E.4.5 Learning

In the ABM for this study, the navigation capacities are described as the
ability to orient in the odour plume emitted from the hosts known as klino-
taxis, where mosquito uses its memory of CO2 concentration from the past
to select the next direction of movement. This process is included to en-
able the mosquito make more directional movement to find the host(s). The
mosquitoes do not change their behavior during the course of the simulations.
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E.4.6 Prediction

The adaptive behavior of mosquitoes is based on the implicit prediction that,
taking steps leading away from the host is likely not to be accepted. This
assumption is accurate in the sense that if the new concentration (i.e. in
the new mosquito position), is higher than the old concentration, the step
is always accepted, otherwise, the step can be accepted with a certain prob-
ability. Also, repellency and physical barrier play a role of prediction, as
the candidate position is rejected upon being repelled or blocked physically.
Mosquitoes do not intentionally make decisions. The ‘decisions’ are proba-
bilistic and lead to the overall results in a statistical average sense.

E.4.7 Sensing

Motion capacities are captured by considering the mode of movement, switch-
ing from a pure random walk in the absence of sensory cues, to a directionally
biased random walk, after entering the CO2 plume. Mosquitoes are usually
able to sense the human host only at a distance less than 80 m [12]. To ac-
count for a short-distance (less than 3m) behaviour, where increased sensory
information induces greater attraction to the host, a third mode of move-
ment is involved. This effect is included by a concentration scaling factor
which facilitates more directional movement towards the host. In the com-
munity level scenario, the CO2 concentration sensed by the mosquito at a
short distance (less than 15m [6], [19]) is assumed to be the one emitted
from the nearest household. The key emphasis here is on the nearest target
concept, which basically implies that factors other than just CO2 alone of-
ten cause the mosquito to localize the search at a short distance, as stated
in [6], [19], [20]. Non-normalized weights are applied inversely proportional
to the distance following this rationale, which aligns with the evidence that
larger agglomerates emit stronger odors, thus attracting more mosquitoes
[13]. The mechanism of sensing (in community-level case) is modelled with
the softmax function and the reverse-logistic weights (see Fig. S9). These
sensing assumptions included in the simulations are typical for this modelling
approach.
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E.4.8 Interactions

The ABM presented here consist of non-interactive mosquito agents. How-
ever, there is direct interaction between mosquitoes and humans given that
mosquitoes can sense and bite the humans.

E.4.9 Stochasticity

The simulation results depends on random numbers, so the output of each
experiment is stochastic. Initially, all the mosquito agents occupy randomly
generated spatial locations in the simulation domain. In the community-
level case, households are randomly located inside the spatial domain. These
randomizations used for initialization of spatial positions is done at each
successive repetition of the algorithm to average for stochasticity arising from
difference in spatial arrangement and position.

The host-seeking process is given by a random walk with accept-reject step-
ping, with the acceptance probabilities are estimated to match the observed
effects associated with mosquito responses to the host, in the presence of
the LLIN (such as repulsion and early exit) and poisoning by insecticides.
The candidate position is randomly proposed by using uniformly distributed
random direction with respect to the previous position. Random numbers
are generated from the uniform distribution to compare with the probabili-
ties of accepting (by attraction) and rejecting (associated with repellent) a
candidate position, accounting for dead mosquitoes and accounting for the
the barriers posed by the net and wall.

In the household-level model, mosquitoes are assumed to randomly choose
one of the humans upon entering the household. The scenario is then re-
duced to the case of a single host in the hut. Moreover, the diversion to
other humans which happens after a certain period of time spent in unsuc-
cessful attempts to feed on the protected host was made by choosing another
person at random among the other inhabitants of hut. Again, randomiza-
tion is employed for the multiple biting modelled in the household-level. The
maximum number of successful feeding attempts can be up to 5, and this
property is randomized and sampled separately for each of the mosquitoes.

In order to ensure statistical accuracy needed for calibration of model param-
eters, the averaged model outputs obtained by multiple simulations are taken,
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using a sufficiently large swarm of mosquitoes in every case. It should also be
noted, that the data from [1] are given in percentages, and as such, the abso-
lute number of mosquitoes does not influence the results. However, since the
model is stochastic, it is necessary to average all the results over several rep-
etitions. A combination of 6 repetitions and a swarm of 600 mosquitoes (for
the hut-level) results in a relatively small variance considering the minimal
CPU time. The number of repetitions in the community-level case is larger
than in the hut-level experiment, to average for the stochasticity arising from
the spatial arrangement of the households. Note that in the community-level
simulations, combinations of parameter values are randomly selected from
the estimated posteriors at each successive iteration of the algorithm for un-
certainty quantification.

E.4.10 Collectives

Collective effects are not included into the model.

E.4.11 Observation

Field data is used to calibrate the hut-level model. At the end of the simula-
tions, the proportion of fed and dead mosquitoes (which are of interest) are
recorded, although the proportion of exited mosquitoes can also be recorded.
These proportions are recorded separately for two cases: assuming no be-
havioural alterations and assuming alterations by parasite, separately for the
two mosquito species and each of the chemical treatments considered in the
study. Also, in case of behavioral alterations, the contact rates are recorded
separately for infectious and uninfected mosquitoes. Response surfaces are
fitted to the relevant responses (contact and mortality rates) obtained from
the ABM simulations, with respect to the household size and the coverage
for outputs corresponding to each of the insecticidal treatments, respectively.
The response surface is fitted for all the aforementioned cases. The coeffi-
cients from the fitted response surfaces can be used when incorporating the
ODE-based model of malaria transmission, as they provide the values of the
main parameters, which enables the extension of the ABM simulations car-
ried out over a ’snapshot’ period of one night to continuous time interval. It
was observed that as the coverage with LLINs increases the death rates in-
crease and the fed rates decrease. However, there is insignificant dependence
of mortality rates on the household size.

27



E.5 Initialization

In the hut-level situation, one human agent and with a swarm of 600 mosquitoes
is used. At the household-level, one household (with several number of hu-
mans) and a swarm of 700 mosquitoes is employed. At the community level,
households of different sizes ranging from 2 to 10 people are used. A con-
stant number of 700 mosquitoes and around 20 individuals are used for each
experimental run. The mosquitoes can either be infected or uninfected. The
number of infectious mosquitoes is constant for a single experiment . This
is because, it takes a period of 10 to 12 days for parasites to reach a stage
whereby they are ready for transmission whereas the ABM simulation for
this study is only for a night. Humans can either be protected or unpro-
tected. The protection is marked with 0 (for unprotected humans) and 1 (for
protected humans). The percentage of protected humans for each household
remains constant in each of the simulations. Note that for hut-level case, the
host is always protected. Again the status of the hosts and the households
are marked as not-bitten in the initialization. For each mosquito agent, there
is an associated number of states that can be 0 or 1, like dead or alive. For
each household, such state is assigned and updated, to track if the mosquito
was host-seeking in that household recently. In the simulation model, the
mosquitoes are presented as a number of agents in a two-dimensional rect-
angular domain, initially placed at uniformly generated random spatial loca-
tions. In the community-level simulations, mosquitoes are initially randomly
positioned inside the experimental domain with multiple households located
at a distance not less than 40m from each other, such that there is no com-
petitive attraction caused by vision [6]. Depending on the initial positions
of the mosquitoes, the initial concentrations are assigned. The host-seeking
time, the number of contacts with the net, and the accumulated dosage of
chemicals are initially set to zero for all the mosquitoes and updated at each
iteration. In the community-level case, it is assumed that upon entering a
new household, the host-seeking time count is reinitialized. This was done
to consider the habit of early exit after a certain time spent inside, so-called
exophily.

E.6 Input data

The model does not use input data to represent time-varying processes.
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E.7 Submodels

The equations for the modelled processes in Table S2 are given below:

xn = xn−1 + δW, (S2)

where the increment δW added to xn−1 is sampled in random direction, with
a step size given by a normal distribution N(x0, σ

2I).

C(x,xh) = exp

[
−d

2(x,xh)

2σ2
a

]
, (S3)

where x denotes the position of the mosquito, and C stands for the con-
centration that enables a mosquito to sense the host at a distance d(x,xh).
The standard deviation of the Gaussian σa determines a maximal distance
at which the mosquito is able to sense the host.

αa(x
n|xn−1) = min

(
1,

p(xn)

p(xn−1)

)
, (S4)

where p(xn)/p(xn−1) is the ratio of the attraction potential function p(x)
defined at each point x, which depends on the concentration and other at-
traction factors.

σacc(x,x
h) =

{
σ1
acc + σ2

accd(x,xh), d(x,xh) ≤ 80
σmax
acc , d(x,xh) > 80.

(S5)

The above function increases from the minimum value of σ1
acc with a slope

given by the parameter σ2
acc until it is replaced by a constant which suitably

provides a purely random movement outside the concentration plume [11].

α∆t = min
{

1, µ∆t
}
, (S6)

where ∆t = 2 seconds is used for all simulations, and a value for µ taken
from the literature (see [11] for more details).

Ctot(n+ 1) =
n+1∑
i=1

Di = Ctot(n) +Dn+1. (S7)
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where Di is non-zero in case of hitting the net surface (i.e., equal to the unit
dosage), and zero otherwise.

Ctot(n+ 1) = Ctot(n) +Dn+1 − αCtot(n)∆t. (S8)

α∆t
p (n) = µpCtot(n)∆t, (S9)

where the effective poisoning impact is obtained by a scaling coefficient µp

which depends on the given insecticide used for LLIN treatment.

Crej = r
[
1− 1/

(
1 + exp

(
−
(
d(x,xh)− d50

)
/s
))]

, (S10)

where d(x,xh) denotes the distance from the mosquito to the protected hu-
man and r ranges from 0 to 1. The parameters d50 and s determine the range
of coverage and the spread of the chemical. The logistic function is modified
such that the rejection probability at the candidate position x amplifies as
the mosquito approaches the source of repellent.

σacc(x, Ctot) = σacc(x) + µe · Ctot, (S11)

where Ctot denotes the total dosage of chemical consumed by the mosquito
(see Equation S7).
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