| 1  | Preclinical evaluation of strasseriolides A-D, potent antiplasmodial macrolides                                                                          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | isolated from Strasseria geniculata CF-247251                                                                                                            |
| 3  |                                                                                                                                                          |
| 4  | Frederick Annang <sup>1, †</sup> , Guiomar Pérez-Moreno <sup>2, †</sup> , Caridad Díaz <sup>1</sup> , Victor González-                                   |
| 5  | Menéndez <sup>1</sup> , Nuria de Pedro Montejo <sup>1</sup> , José Pérez del Palacio <sup>1</sup> , Paula Sánchez <sup>2</sup> , Scott                   |
| 6  | Tanghe <sup>3</sup> , Ana Rodriguez <sup>3</sup> , Ignacio Pérez-Victoria <sup>1</sup> , Juan Cantizani <sup>1</sup> , Luis M. Ruiz-Pérez <sup>2</sup> , |
| 7  | Olga Genilloud <sup>1</sup> , Fernando Reyes <sup>1</sup> , Francisca Vicente <sup>1*</sup> , Dolores González-                                          |
| 8  | Pacanowska <sup>1</sup> *                                                                                                                                |
| 9  |                                                                                                                                                          |
| 10 | <sup>1</sup> Fundación MEDINA, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain.                                                                |
| 11 | <sup>2</sup> Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de                                                                 |
| 12 | Investigaciones Científicas (CSIC) Avda. del Conocimiento 17, 18016, Armilla, Granada,                                                                   |
| 13 | Spain.                                                                                                                                                   |
| 14 | <sup>3</sup> Department of Microbiology, New York University School of Medicine, New York, NY                                                            |
| 15 | 10016, USA                                                                                                                                               |
| 16 | * <u>francisca.vicente@medinaandalucia.es</u>                                                                                                            |
| 17 | <u>*dgonzalez@ipb.csic.es</u>                                                                                                                            |
| 18 | <sup>†</sup> Equal contribution                                                                                                                          |
| 19 |                                                                                                                                                          |
| 20 |                                                                                                                                                          |
| 21 |                                                                                                                                                          |
| 22 |                                                                                                                                                          |
| 23 |                                                                                                                                                          |

| 24  | LC-MS method development for the quantification of compounds in mouse plasma                             |
|-----|----------------------------------------------------------------------------------------------------------|
| 25  | The following LC-MS method was developed for the quantification and validation of                        |
| 26  | strasseriolide $\mathbf{B}$ in mice plasma and was adapted for the quantification of strasseriolides     |
| 27  | A, C, D.                                                                                                 |
| 28  |                                                                                                          |
| 29  | The mass spectrometer used in this experiment was operated in positive ion electrospray                  |
| 30  | ionization (ESI) mode for strasseriolides $\mathbf{A}$ and $\mathbf{D}$ and in negative ion ESI mode for |
| 31  | strasseriolide <b>B</b> and <b>C</b> . The LC-MS instrumentation used was composed of an API 4000        |
| 32  | mass spectrometer (Applied Biosystems/AB SCIEX, ThermoFisher Scientific, USA)                            |
| 33  | coupled to an Agilent 1290 HPLC system (Agilent Technologies, USA) equipped with an                      |
| 34  | analytical supelco C18 column of 2.1 x 50 mm, 5 $\mu m$ and auto sampler CTC Pal-xt (CTC                 |
| 35  | Analytics AG, Switzerland). Mobile phase A [90 % water/Acetonitrile (v/v) + 0.1 %                        |
| 36  | formic acid], B [90 % Acetonitrile/water (v/v) + 0.1 % formic acid], rinse solution A                    |
| 37  | [Acetonitrile: methanol: water (20: 40: 40) % v/v + 0.1 % formic acid], B (Water + 0.1%                  |
| 38  | formic acid), and reconstitution solution [Water: acetonitrile (50:50) $\% v/v$ ] were also              |
| 39  | used. Five microlitres (5 $\mu$ L) sample injection and 0.6 mL/min flow rate were used with              |
| 40  | the following mobile phases B/A elution conditions: gradient maintained at 5% B from                     |
| 41  | 0.0-0.5 min, then increased linearly to 95% B from 0.5-2.10 min, maintained at 95% B                     |
| 42  | from 2.10-3.20 min, lowered to 5% B from 3.20-3.30 min and later maintained at 95% B                     |
| 43  | from 3.30-4.50 min to wash the column. The auto-sampler was set at 4 $^{\circ}$ C to rinse the           |
| 44  | injection system in between samples by using the rinsing solutions A and B respectively.                 |
| 4 7 |                                                                                                          |

| 46 | Ten millimolar (10 mM) DMSO stocks of the test compound, strasseriolide <b>B</b> (negative         |
|----|----------------------------------------------------------------------------------------------------|
| 47 | m/z 435 monitored) and internal standard, strasseriolide C (negative $m/z$ 449 monitored)          |
| 48 | were initially prepared, from which 9.94 $\mu M$ (4333 ng/mL) working concentrations were          |
| 49 | made in DMSO. An aliquot of the strasseriolide $\mathbf{B}$ working concentration was diluted      |
| 50 | (1:3) in DMSO to prepare a duplicate six-point calibration curve from 0.0016 $\mu$ M (0.7          |
| 51 | ng/mL) to 1.17 $\mu$ M (510 ng/mL). Four quality control concentrations of strasseriolide <b>B</b> |
| 52 | at 1.18 (QC1), 0.294 (QC2), 0.0092 (QC3) and 0.00459 $\mu$ M (QC4) (i.e. 513, 128.0, 4.0           |
| 53 | and 2.0 ng/mL) were also prepared in duplicate.                                                    |
| 54 |                                                                                                    |
| 55 | Blank mouse plasma (prepared from non-injected mouse) was retrieved from the freezer               |
| 56 | (-80 °C) and kept on ice to thaw. The sample was vortexed and 15 $\mu L$ aliquots transferred      |
| 57 | into 0.7 mL Eppendorf tubes after which 35 $\mu$ L Milli-Q water were added and vortexed.          |
| 58 | Duplicate sets of the diluted plasma were then respectively spiked with 2 uL of each               |
| 59 | concentration of the calibration curve. Another duplicate set of the diluted plasma was            |
| 60 | spiked with 2 uL of each QC concentration. All the samples were also spiked with 2 $\mu L$         |
| 61 | internal standard (i.e. strasseriolide C at final concentration of 0.222 $\mu$ M). Four            |
| 62 | microlitres (4 $\mu$ L) DMSO were added to a set of six diluted plasma to serve as blanks.         |
| 63 | Two microlitres (2 $\mu$ L) QC/internal standard (both at final conc of 0.222 $\mu$ M) were added  |
| 64 | to 100 $\mu$ L aliquots of reconstitution solution to serve as non-matrix samples.                 |
| 65 |                                                                                                    |
| 66 | One hundred and sixty-two microlitres (162 $\mu$ L) ice-cold acetonitrile was added to all the     |
| 67 | plasma-containing samples, centrifuged at 13300 rpm for 15 min at 4 °C. Aliquots of                |
| 68 | 180 $\mu$ L were carefully transferred (without disturbing the protein precipitate) from each      |

| 69 | tube into clean HPLC vials and evaporated to dryness in an EZ2 Genevac set at room                                 |
|----|--------------------------------------------------------------------------------------------------------------------|
| 70 | temperature. The dried samples were re-dissolved in 40 $\mu$ L reconstitution solution by                          |
| 71 | vortexing. The samples were placed in an auto-sampler mass spectrometer, subjected to                              |
| 72 | LC-MS-MS and the resulting data analysed by Analyst® software version 1.5.2. A                                     |
| 73 | standard calibration curve was drawn by plotting the peak area ratio of test compound to                           |
| 74 | internal standard against the concentrations of the calibration curve.                                             |
| 75 |                                                                                                                    |
| 76 | The following qualitative data were validated in this method development:                                          |
| 77 | (1) Accurate metabolite identification – that the plasma ionic peak of strasseriolide $\bf{B}$                     |
| 78 | ( $m/z$ 435 and retention time of 2.42 min) and that of the internal standard, strasseriolide C                    |
| 79 | ( $m/z$ 449 and retention time of 2.26 minutes) corresponded well with what is known for                           |
| 80 | the pure compounds.                                                                                                |
| 81 | (2) Specificity - this was evaluated by the inclusion of six blank plasma samples (only                            |
| 82 | spiked with DMSO), from which no significant interferences were observed at the                                    |
| 83 | retention times of the test compound and internal standard.                                                        |
| 84 | (3) Auto-sampler carryover was absent - implying that when samples are auto-injected                               |
| 85 | into the LC-MS system in a pre-programmed sequence, there is no interference nor                                   |
| 86 | mixing between samples.                                                                                            |
| 87 | (4) Linearity of calibration curves - two independent standard calibration curves (0.0016                          |
| 88 | to 1.17 $\mu$ M) of test compound (strasseriolide <b>B</b> ), were prepared in mouse plasma and                    |
| 89 | analyzed. The linearity of this curve was greater than 0.995 over the range of                                     |
| 90 | concentrations analyzed (Fig. S1 and Table S1). The peak area ratio of test compound                               |
| 91 | (strasseriolide $\mathbf{B}$ ) to the internal standard (strasseriolide $\mathbf{C}$ ), was correlated to the test |
|    |                                                                                                                    |

| 92  | compound concentration using the linear fit with $1/X^2$ weighting (where X is                      |
|-----|-----------------------------------------------------------------------------------------------------|
| 93  | concentration). All the standard calibration curve concentrations were recomputed from              |
| 94  | the curve plotted and were found to be of acceptable precision (CV $\pm$ 20 %) and accuracy         |
| 95  | ( $\pm$ 20 %) when compared to the respective theoretical concentrations ( <b>Table S1</b> ) except |
| 96  | for the lowest concentration of 0.00 16 $\mu$ M which was no included in plotting the curve.        |
| 97  | Hence, the lower and upper concentration limits of the calibration curve were established           |
| 98  | at 0.00484 and 1.18 $\mu$ M respectively. The overall precision and accuracy of the                 |
| 99  | developed method were determined using the three QC concentrations shown on Table                   |
| 100 | S2.                                                                                                 |
|     |                                                                                                     |



103 Fig. S1. Calibration curve of test strasseriolide B (i.e. peak area ration of strasseriolide

- **B**:**C** vs concentration of **B**)
- 105 The regression equation for the curve is:

 $Y = 2.16 \times 10^{-2} + 0.0178X + 0.00594$  (r = 0.9997), where X is the expected concentration

107 (**Table S1**) and Y is the peak area ratio of test compound (strasseriolide **B**) to the internal

108 standard (strasseriolide C).

**Table S1.** Calibration curve table of strasseriolide **B**.

| Expected conc. in | No. of     | Experimental   | %        | Std.      | % CV |
|-------------------|------------|----------------|----------|-----------|------|
| ng/mL (or µM)     | replicates | mean conc. in  | Accuracy | deviation |      |
|                   |            | ng/mL (or µM)  |          |           |      |
| 2.11 (0.00484)    | 2          | 2.40 (0.00550) | 113.8    | 0.04      | 1.6  |
| 6.33 (0.0145)     | 2          | 6.48 (0.0147)  | 102.3    | 0.05      | 0.7  |
| 19 (0.0436)       | 2          | 18.69 (0.0429) | 98.4     | 0.25      | 1.3  |
| 57 (0.131)        | 2          | 56.85 (0.130)  | 99.7     | 0.84      | 1.5  |
| 171 (0.392)       | 2          | 171.12 (0.392) | 100.1    | 13.28     | 7.8  |
| 513 (1.177)       | 2          | 512.99 (1.177) | 100.0    | 7.28      | 1.4  |
| 0.7 (0.0061)      | 1          | 0.55 (0.00126) | 78.0     | NA        | NA   |

| Compound | Expected  | No.    | Experimental | STD       | %    | %        |
|----------|-----------|--------|--------------|-----------|------|----------|
|          | conc. in  | values | mean conc.   | deviation | CV   | Accuracy |
|          | ng/mL     |        | in ng/mL     |           |      |          |
|          | (or µM))  |        | (or µM)      |           |      |          |
| QC3      | 4         | 5      | 3.606        | 0.211     | 5.84 | 90.162   |
|          | (0.00917) |        | (0.00827)    |           |      |          |
| QC2      | 128       | 5      | 117.3        | 5.273     | 4.49 | 91.686   |
|          | (0.294)   |        | (0.269)      |           |      |          |
| QC1      | 513       | 5      | 506.9        | 12.985    | 2.56 | 98.817   |
|          | (1.177)   |        | (1.163)      |           |      |          |

**Table S2.** QC table used to calculate the precision and accuracy of the method.

117

(5) The mean recovery rate for the test compound (strasseriolide B) – this was calculated
to be 29 % by comparing the plasma QC peak area ratios at the established retention time
to peak area ratios of non-matrix samples at the same retention time.

121

122 Having validated the LC-MS method, it was used with some adjustments to quantify the

123 mice plasma concentrations of strasseriolides **A-D** after intravenous dosage at 25 mg/kg

124 as described in the methods section of the main text.

125

#### 126 Computing in vivo (mice) PK parameters of strasseriolides A-D

- 127 After intravenous injection of mice with each of the test compounds and LC-MS
- 128 quantification of the compounds in the plasma at different time points (described in the

- 129 main text), the data was fed into the *PK solver 2.0* add-in program in an Excel file with
- 130 "non-compartmental analysis of plasma data after intravenous bolus input" and from the
- 131 concentration vs time graph, the PK parameters of each compound were computed.
- 132
- 133 **Table S3a.** Strasseriolide **A** quantification in mouse plasma (i.v. dosage of 25 mg/kg)

|                         | Calc.   | Calc.     | Ave.     | STD       | Analyte |
|-------------------------|---------|-----------|----------|-----------|---------|
| Sample Name             | Conc.   | Conc.     | Conc.    | deviation | RT      |
|                         | (ng/ml) | (µM)*     | (µM)     |           | (min)   |
| T 24 h (1440 minutes) 1 | <2.1    | < 0.00484 |          |           | 2.52    |
| T 24 h (1440 minutes) 2 | <2.1    | < 0.00484 | <0.00484 | 0         | 2.43    |
| T 24 h (1440 minutes) 3 | <2.1    | < 0.00484 |          |           | 2.82    |
| T 6 h (360 minutes) 1   | 3.19    | 0.00735   |          |           | 2.61    |
| T 6 h (360 minutes) 2   | 2.53    | 0.00583   | 0.01156  | 0.0086    | 2.61    |
| T 6 h (360 minutes) 3   | 9.33    | 0.02150   |          |           | 2.61    |
| T 2 h (120 minutes) 1   | 43.7    | 0.1007    |          |           | 2.62    |
| T 2 h (120 minutes) 2   | 55.0    | 0.1267    | 0.0935   | 0.0374    | 2.61    |
| T 2 h (120 minutes) 3   | 23.0    | 0.0530    |          |           | 2.61    |
| T 0.5 h (30 minutes) 1  | 343.0   | 0.790     |          |           | 2.62    |
| T 0.5 h (30 minutes) 2  | 214.0   | 0.493     | 0.498    | 0.290     | 2.61    |
| T 0.5 h (30 minutes) 3  | 91.6    | 0.2111    |          |           | 2.61    |

134 \*Molecular weight of strasseriolide  $\mathbf{A} = 434$  g/mol

135

| 137 | Table S3b. | Non-compartmental | l analysis of a | strasseriolide A | in mouse | plasma (after | i.v. |
|-----|------------|-------------------|-----------------|------------------|----------|---------------|------|
|-----|------------|-------------------|-----------------|------------------|----------|---------------|------|

138 bolus input)

| Parameter         | Unit                                                  | Value                       |
|-------------------|-------------------------------------------------------|-----------------------------|
| Lambda_z          | 1/h                                                   | 0.157078075                 |
| t1/2*             | h                                                     | 4.412755773                 |
| Tmax*             | h                                                     | 0.5                         |
| Cmax*             | ng/ml (or $\mu M$ )                                   | 216.2 (or 0.498)            |
| C0*               | ng/ml (or $\mu M$ )                                   | 377.5422633 (or 0.870)      |
| Clast_obs/Cmax    |                                                       | 0.009713228                 |
| AUC 0-t           | ng/ml x h (or $\mu$ M x h)                            | 496.1355658 (or 1.143)      |
| AUC 0-inf_obs     | ng/ml x h (or $\mu$ M x h)                            | 509.5047136 (or 1.174)      |
| AUC 0-t/0-inf_obs |                                                       | 0.973760502                 |
| AUMC 0-inf_obs    | ng/ml x h <sup>2</sup> (or $\mu$ M x h <sup>2</sup> ) | 1520.971031 (or 3.505)      |
| MRT 0-inf_obs     | h                                                     | 2.98519521                  |
| Vz_obs            | (mg/kg)/(ng/ml)                                       | 0.312374974 (or 312.4 L/kg) |
| Cl_obs            | (mg/kg)/(ng/ml)/h                                     | 0.049067259                 |
| Vss_obs           | (mg/kg)/(ng/ml)                                       | 0.146475348                 |

<sup>1</sup>39 \* The parameters Cmax, C0 and Tmax obtained may not be the accurate values since

140 blood samples were not collected at time T0 (or at times close enough to T0) in our

141 experiment.

| 143 | • | $\lambda z$ (Lambda-z) – Individual estimate of the terminal elimination rate constant,   |
|-----|---|-------------------------------------------------------------------------------------------|
| 144 |   | calculated using log-linear regression of the terminal portions of the plasma             |
| 145 |   | concentration-versus-time curves.                                                         |
| 146 | • | t1/2 – Apparent terminal elimination half-life time, defined as 0.693 / $\lambda z$       |
| 147 | • | C-max – Maximum concentration achieved                                                    |
| 148 | • | T-max – Time to reach maximum concentration                                               |
| 149 | • | AUC0-t – The area under the concentration vs. time curve, calculated as sum of            |
| 150 |   | AUCs using linear trapezoidal summation from time 0 to the last measurable data           |
| 151 |   | point                                                                                     |
| 152 | • | AUC0-inf – The area under the plasma concentration-time curve extrapolated to             |
| 153 |   | infinity, calculated as: AUC0-inf =AUC0-t + Clast / $\lambda z$ , where Clast is the last |
| 154 |   | measurable concentration.                                                                 |
| 155 | • | MRT – Mean retention time                                                                 |
| 156 | • | Vss – Steady state volume                                                                 |
| 157 | • | Vz_obs – Plasma distribution volume                                                       |
| 158 | • | Cl – Clearance                                                                            |
| 159 |   |                                                                                           |

| Sample Name     | Calc.<br>Conc.<br>(ng/ml) | Calc.<br>Conc.<br>(µM)* | Ave.<br>Conc.<br>(µM) | STD<br>deviation | Analyte<br>RT (min) |
|-----------------|---------------------------|-------------------------|-----------------------|------------------|---------------------|
| T 8 minutes 1** | 8110.0                    | 18.6                    |                       |                  | 2.39                |
| T 8 minutes 2** | 9098.0                    | 20.9                    | 19.6                  | 1.2              | 2.39                |

**Table S4.** Strasseriolide **B** quantification in mouse plasma (i.v. dosage of 25 mg/kg)

| Sample Name     | Calc.<br>Conc.<br>(ng/ml) | Calc.<br>Conc.<br>(µM)* | Ave.<br>Conc.<br>(µM) | STD<br>deviation | Analyte<br>RT (min) |
|-----------------|---------------------------|-------------------------|-----------------------|------------------|---------------------|
| T 8 minutes 3** | 8419.0                    | 19.3                    |                       |                  | 2.39                |

161 \*Molecular weight of strasseriolide  $\mathbf{B} = 436 \text{ g/mol}$ 

162 \*\*All the three mice died about eight minutes after injection with the compound

163

164 **S5a**. Strasseriolide **C** quantification in mouse plasma (i.v. dosage of 25 mg/Kg)

|                         | Calc.      | Calc.         | Ave.          | STD       |          |
|-------------------------|------------|---------------|---------------|-----------|----------|
| Sample Name             | Conc.      | Conc.         | Conc.         | deviation | Analyte  |
| •                       | (ng/ml)    | ( <b>M</b> )* | ( <b>N</b> 1) |           | RT (min) |
|                         | (IIg/IIII) | (μινι)*       | (μινι)        |           |          |
| T 24 h (1440 minutes) 1 | 2.04       | 0.00453       |               |           | 2.12     |
| T 24 h (1440 minutes) 2 | 1.27       | 0.00282       | 0.00354       | 0.00089   | 2.12     |
| T 24 h (1440 minutes) 3 | 1.47       | 0.00327       |               |           | 2.12     |
| T 6 h (360 minutes) 1   | 10.4       | 0.0231        |               |           | 2.12     |
| T 6 h (360 minutes) 2   | 10.6       | 0.0236        | 0.024         | 0.0012    | 2.12     |
| T 6 h (360 minutes) 3   | 11.4       | 0.0253        |               |           | 2.12     |
| T 2 h (120 minutes) 1   | 20.7       | 0.046         |               |           | 2.12     |
| T 2 h (120 minutes) 2   | 19.8       | 0.044         | 0.040         | 0.009     | 2.12     |
| T 2 h (120 minutes) 3   | 13.6       | 0.030         |               |           | 2.12     |
| T 30 minutes 1          | 122.0      | 0.271         |               |           | 2.12     |
| T 30 minutes 2          | 102.0      | 0.227         | 0.246         | 0.023     | 2.12     |

| Sample Name    | Calc.<br>Conc.<br>(ng/ml) | Calc.<br>Conc.<br>(µM)* | Ave.<br>Conc.<br>(µM) | STD<br>deviation | Analyte<br>RT (min) |
|----------------|---------------------------|-------------------------|-----------------------|------------------|---------------------|
| T 30 minutes 3 | 108.0                     | 0.240                   |                       |                  | 2.12                |

165 \*Molecular weight of strasseriolide C = 450 g/mol

- 167 **Table S5b.** Non-compartmental analysis of strasseriolide **C** in mouse plasma (after i.v.
- 168 bolus input)

| Parameter         | Unit                              | Value                       |
|-------------------|-----------------------------------|-----------------------------|
| Lambda_z          | 1/h                               | 0.109293684                 |
| t1/2*             | h                                 | 6.342060722                 |
| Tmax*             | h                                 | 0.5                         |
| Cmax*             | ng/ml (or $\mu M$ )               | 110.67 (or 0.246)           |
| C0*               | ng/ml (or $\mu M$ )               | 203.1753953 (or 0.452)      |
| Clast_obs/Cmax    |                                   | 0.014324324                 |
| AUC 0-t           | ng/ml x h (or $\mu$ M x h)        | 344.6788488 (or 0.766)      |
| AUC 0-inf_obs     | ng/ml x h (or $\mu$ M x h)        | 359.2268075 (or 0.798)      |
| AUC 0-t/0-inf_obs |                                   | 0.959502024                 |
| AUMC 0-inf_obs    | ng/ml x $h^2$ (or $\mu M x h^2$ ) | 1693.549878 (or 3.763)      |
| MRT 0-inf_obs     | h                                 | 4.714430667                 |
| Vz_obs            | (mg/kg)/(ng/ml)                   | 0.636760632 (or 636.8 L/kg) |
| Cl_obs            | (mg/kg)/(ng/ml)/h                 | 0.069593915                 |

|     | Vss_obs               | (mg/kg)/(ng/ml)              | 0.328095688                          |
|-----|-----------------------|------------------------------|--------------------------------------|
| 169 | * The parameters Cmax | x, C0 and Tmax obtained r    | nay not be the accurate values since |
| 170 | blood samples were no | t collected at time T0 (or a | t times close enough to T0) in our   |
| 171 | experiment.           |                              |                                      |
| 172 |                       |                              |                                      |

| 173 | Table S6a. | Strasseriolide <b>D</b> | quantification in m | nouse plasma (* | i v. dosage | of 25 mg/Kg)   |
|-----|------------|-------------------------|---------------------|-----------------|-------------|----------------|
| 175 | Lanc Dua.  |                         | quantineation in n  | louse plasma (. | I.v. uosage | 01 23  mg/ mg/ |

| Comple Norma            | Calc.   | Calc. | Ave.          | STD       | Analyte |
|-------------------------|---------|-------|---------------|-----------|---------|
| Sample Name             | Conc.   | Conc. | Conc.         | deviation | RT      |
|                         | (ng/ml) | (µM)* | ( <b>µM</b> ) |           |         |
| T 24 h (1440 minutes) 1 | 49.2    | 0.109 |               |           | 2.08    |
| T 24 h (1440 minutes) 2 | 49.9    | 0.110 | 0.107         | 0.005     | 2.08    |
| T 24 h (1440 minutes) 3 | 46.1    | 0.102 |               |           | 2.08    |
| T 5 h (300 minutes) 1   | 195.0   | 0.431 |               |           | 2.08    |
| T 5 h (300 minutes) 2   | 164.0   | 0.363 | 0.389         | 0.037     | 2.08    |
| T 5 h (300 minutes) 3   | 168.0   | 0.372 |               |           | 2.08    |
| T 1.5 h (90 minutes) 1  | 307.0   | 0.679 |               |           | 2.08    |
| T 1.5 h (90 minutes) 2  | 658.0   | 1.456 | 1.247         | 0.497     | 2.08    |
| T 1.5 h (90 minutes) 3  | 726.0   | 1.606 |               |           | 2.08    |

174 \*Molecular weight of strasseriolide  $\mathbf{D} = 452 \text{ g/mol}$ 

- 178 **Table S6b.** Non-compartmental analysis of strasseriolide **D** in mouse plasma (after i.v.
- 179 bolus input)

| Parameter         | Unit                                                | Value                      |
|-------------------|-----------------------------------------------------|----------------------------|
| Lambda_z          | 1/h                                                 | 0.09534357                 |
| t1/2*             | h                                                   | 7.269993954                |
| Tmax*             | h                                                   | 1.5                        |
| Cmax*             | ng/ml (or $\mu M$ )                                 | 564 (or 1.247)             |
| C0*               | ng/ml (or $\mu M$ )                                 | 929.0437116 (or 2.055)     |
| Clast_obs/Cmax    |                                                     | 0.085815603                |
| AUC 0-t           | ng/ml x h (or $\mu$ M x h)                          | 4546.582784 (or 10.06)     |
| AUC 0-inf_obs     | ng/ml x h ( $\mu$ M x h)                            | 5054.22058 (or 11.18)      |
| AUC 0-t/0-inf_obs |                                                     | 0.899561606                |
| AUMC 0-inf_obs    | ng/ml x h <sup>2</sup> ( $\mu$ M x h <sup>2</sup> ) | 40557.80737 (or 89.73)     |
| MRT 0-inf_obs     | h                                                   | 8.024542405                |
| Vz_obs            | (mg/kg)/(ng/ml)                                     | 0.051879336 (or 51.9 L/kg) |
| Cl_obs            | (mg/kg)/(ng/ml)/h                                   | 0.004946361                |
| Vss_obs           | (mg/kg)/(ng/ml)                                     | 0.039692284                |

180 \* The parameters Cmax, C0 and Tmax obtained may not be the accurate values since

181 blood samples were not collected at time T0 (or at times close enough to T0) in our

182 experiment.

183

184

#### 186 Calculation of theoretical Cmax achievable with 25 mg/kg drug dosage in mice

187 For purpose of comparison with the experimental Cmax values, the theoretical Cmax

188 achievable with the drug dosage of 25 mg/kg (0.5 mg drug in 200  $\mu$ L vehicle vehicle)

189 was calculated with two key ideal-situation assumptions: (i) total mouse plasma volume

is estimated in the literature to be 1.8 mL (1), (ii) that theoretically all the compounds are

totally soluble in the vehicle as well as the whole mouse plasma volume. From the above

192 assumptions, the theoretical maximum concentration (theoretical Cmax) achievable in the

193 mouse plasma could be calculated as 0.5 mg/2 mL (i.e 1.8 mL plasma + 0.2 mL vehicle).

194 This concentration is equivalent to 250000 ng/mL or 250000 ppb (i.e. between 553-573

195  $\mu$ M for all the four compounds).

196

|                | Parasitaemia           | Parasitaemia (Luminescence arbitrary units) |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|----------------|------------------------|---------------------------------------------|------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                | Replicate 1            | Replicate 2                                 | Replicate 3            | Replicate 4            | Average ± SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                | 2.90 x 10 <sup>6</sup> | 1.20 x 10 <sup>7</sup>                      | 2.39 x 10 <sup>6</sup> | 5.57 x 10 <sup>6</sup> | $5.72 \text{ x } 10^6 \pm 4.43 \text{ x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Vehicle only   |                        |                                             |                        |                        | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Strasseriolide | 6.98 x 10 <sup>6</sup> | 2.22 x 10 <sup>6</sup>                      | 2.90 x 10 <sup>6</sup> | 2.55 x 10 <sup>6</sup> | $3.66 \ge 10^6 \pm 2.23 \ge 10^6 \pm 10^6 \le 10^{-6} \le$ |  |  |  |  |
| С              |                        |                                             |                        |                        | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Chloroquine    | 0.00                   | 0.00                                        | 0.00                   | 0.00                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

197 **Table S7.** *In vivo* mice efficacy data of strasseriolide **C** at i.p. dosage of 50 mg/kg

198

199

200

201

|                         | Parasitaemia (Luminescence arbitrary units) |                        |                        |                        |                        |                                                                     |  |  |
|-------------------------|---------------------------------------------|------------------------|------------------------|------------------------|------------------------|---------------------------------------------------------------------|--|--|
|                         | Replicate 1                                 | Replicate 2            | Replicate 3            | Replicate 4            | Replicate 5            | Average ± SD                                                        |  |  |
| Vehicle only            | 7.81 x 10 <sup>5</sup>                      | 7.45 x 10 <sup>5</sup> | 6.06 x 10 <sup>5</sup> | 4.02 x 10 <sup>4</sup> | 3.64 x 10 <sup>5</sup> | $5.07 \times 10^{5} \pm 3.08$<br>x 10 <sup>5</sup>                  |  |  |
| Strasseriolide <b>D</b> | 2.46 x 10 <sup>5</sup>                      | 1.59 x 10 <sup>5</sup> | 1.88 x 10 <sup>5</sup> | 2.56 x 10 <sup>4</sup> | 6.93 x 10 <sup>3</sup> | $\begin{array}{c} 1.25 \ x \ 10^5 \pm 1.04 \\ x \ 10^5 \end{array}$ |  |  |
| Chloroquine             | 3.86 x 10 <sup>3</sup>                      | 2.17 x 10 <sup>3</sup> | 2.63 x 10 <sup>3</sup> | 3.38 x 10 <sup>3</sup> | -                      | $3.01 \times 10^{3} \pm 0.755 \times 10^{3}$                        |  |  |

# 203 **Table S8.** *In vivo* mice efficacy ta daof strasseriolide **D** at i.p. dosage of 22 mg/kg

# 204

## 205 **References**

- 206 1. Riches, A. C., Sharp, J. G., Thomas, D. B., Smith, S. V.: Blood volume
- 207 determination in the mouse. J Phygiol **228**, 279-284 (1973)