Supplemental information

Table S1. CDC bottle bioassay mortality data of 1x deltamethrin exposure across Manhica district. following 30 minute (diagnostic time) and 120 minute (end of assay) exposure of deltamethrin at 1x the diagnostic dose (12.5ug/bottle) and 5x the diagnostic dose (60ug/bottle). Following morphological identification, mortality data of *An. funestus s.s.* and *An. arabiensis* were calculated.

			All specimens		All specimens		An. funestus s.s.		An. arabiensis	
			30mins mortalit	ÿ	120mins morta	lity	120mins mortali	t y	120 mins mort	ality
	Insecticide	concentration	exposed	control (%)	exposed (%)	control (%)	exposed (%)	control (%)	exposed (%)	control (%)
			(%)							
3 de Fevereiro	DM	1x	10.1 (n=89)	0 (n=17)	43.8 (n=89)	0 (n=17)	40.8 (n=76)	0 (n=14)	87.5 (n=8)	NA
	DM	5x	28.4 (n=81)	0 (n=22)	71.6 (n=81)	0 (n=22)	76.0 (n=50)	0 (n=19)	100 (n=3)	0 (n=1)
Bobole	DM	1x	8.5 (n=82)	0 (n=18)	19.5 (n=82)	0 (n=18)	15.2 (n=79)	0 (n=17)	100 (n=2)	NA
	DM	5x	28.6 (n=63)	0 (n=18)	85.7 (n=63)	0 (n=16)	79.5 (n=44)	0 (n=12)	82.4 (n=17)	0 (n=4)
Buna	DM	1x	3.9 (n=129)	0 (n=34)	6.2 (n=129)	0 (n=34)	4.1 (n=123)	0 (n=33)	100 (n=3)	NA
	DM	5x	4.4 (n=113)	0 (n=12)	7.1 (n=113)	0 (n=12)	2.8 (n=109)	0 (n=12)	100 (n=3)	NA
Chobela	DM	1x	85.0 (n=60)	0 (n=20)	100 (n=60)	0 (n=20)	100 (n=3)	NA	100 (n=50)	0 (n=18)
	DM	5x	99.1 (n=111)	0 (n=24)	99.1 (n=111)	0 (n=24)	92.3 (n=13)	0 (n=3)	100 (n=38)	0 (n=9)
Ilha Josina	DM	1x	88.8 (n=89)	0 (n=22)	91.0 (n=89)	0 (n=22)	53.3 (n=15)	0 (n=4)	98.5 (n=67)	0 (n=18)
	DM	5x	94.4 (n=89)	0 (n=15)	96.6 (n=89)	0 (n=15)	66.7 (n=9)	0 (n=2)	100 (n=73)	0 (n=11)
Macia	DM	1x	10.9 (n=128)	0 (n=29)	70.3 (n=128)	0 (n=29)	70.0 (n=120)	0 (n=27)	100 (n=5)	0 (n=2)
	DM	5x	21.8 (n=110)	0 (n=26)	77.3 (n=110)	0 (n=26)	77.4 (n=106)	0 (n=22)	100 (n=4)	0 (n=3)
Maragra	DM	1x	31.6 (n=19)	0 (n=9)	52.6 (n=19)	0 (n=9)	60.0 (n=20)	0 (n=4)	100 (n=1)	0 (n=2)
Maciana										
	DM	5x	37.5 (n=16)	0 (n=10)	75.0 (n=16)	0 (n=10)	NA	NA	NA	NA
Mulelemane	DM	1x	81.6 (n=76)	0 (n=13)	100 (n=76)	0 (n=13)	100 (n=1)	NA	100 (n=73)	0 (n=13)
	DM	5x	100 (n=70)	0 (n=17)	100 (n=70)	0 (n=17)	NA	NA	100 (n=69)	0 (n=18)
Palmeira 1°/2°/4° Bairro	DM	1x	7.9 (n=63)	0 (n=15)	38.1 (n=63)	0 (n=15)	47.9 (n=48)	0 (n=14)	100 (n=1)	0 (n=2)
	DM	5x	14.8 (n=61)	0 (n=15)	63.9 (n=61)	0 (n=15)	63.6 ((n=55)	0 (n=15)	NA	NA
Punguene	DM	1x	33.9 (n=165)	0 (n=50)	84.2 (n=165)	0 (n=50)	84.3 (n=121)	0 (n=44)	100 (n=12)	0 (n=3)
	DM	5x	50.3 (n=161)	0 (n=46)	84.5 (n=161)	0 (n=46)	87.7 (n=154)	0 (n=40)	100 (n=38)	0 (n=3)
Ribangua	DM	1x	18.3 (n=93)	0 (n=22)	44.1 (n=93)	0 (n=22)	39.0 (n=82)	0 (n=21)	100 (n=6)	NA
	DM	5x	82.3† (n=84)	5.9 (n=17)	93.7† (n=84)	5.9 (n=17)	100 (n=73)	7.1 (n=14)	100 (n=9)	0 (n=3)

DM=Deltamethrin; + Abbott's formula applied

Table S2. CDC bottle bioassay mortality data of different barrios in the town of Palmeira following 30-minute (diagnostic time) and 120-minute (end of assay) exposure of deltamethrin at 1x (12.5ug/bottle) and 5x (60ug/bottle) the diagnostic dose. Following morphological identification, mortality data of *An funestus s.s.* and *An. arabiensis* were calculated.

			All specimens		All specimens		An. funestus		An. arabiensis	
			30mins morta	lity	120mins mortal	lity	120mins mortali	ty	120 mins mort	ality
Neighborhood	Insecticide	concentration	exposed	control	exposed	control	exposed	control	exposed	control
1°,2°, 4° Bairro	DM	1x	7.9 (n=63)	0 (n=15)	38.1 (n=63)	0 (n=15)	47.9 (n=48)	0 (n=14)	100 (n=1)	0 (n=2)
	DM	5x	14.8 (n=61)	0 (n=15)	63.9 (n=61)	0 (n=15)	63.6 ((n=55)	0 (n=15)	NA	NA
3° Bairro A – Roadside	DM	1x	9.6 (n=115)	2.4 (n=42)	14.8 (n=115)	2.4 (n=42)	16.2 (n=117)	0 (n=41)	100 (n=3)	NA
	DM	5x	22.6 (n=53)	0 (n=18)	52.8 (n=53)	0 (n=18)	55.1 (n=49)	0 (n=11)	NA	NA
3° Bairro A – Riverside	DM	1x	10.1 (n=79)	0 (n=19)	24.1 (n=79)	0 (n=19)	22.4 (n=67)	0 (n=19)	NA	NA
	DM	5x	28.8 (n=66)	0 (n=21)	66.7 (n=66)	0 (n=21)	66.7 (n=60)	0 (n=21)	NA	NA
3° Bairro B	DM	1x	10.4 (n=96)	NA	29.2 (n=96)	NA	26.6 (n=94)	NA	100 (n=2)	NA
	DM	5x	16.9 (n=77)	0 (n=22)	41.6 (n=77)	0 (n=22)	52.7 (n=74)	0 (n=23)	100 (n=1)	NA
3° Bairro C	DM	1x	9.2† (n=23)	4.2 (n=24)	36.4† (n=23)	4.2 (n=24)	22.2 (n=18)	0 (n=21)	100 (n=5)	0 (n=2)
	DM	5x	NA	NA	NA	NA	NA	NA	NA	NA
6° Bairro – Roadside	DM	1x	17.7 (n=62)	NA	87.1 (n=62)	NA	86.2 (n=58)	NA	100 (n=2)	NA
	DM	5x	5.0 (n=180)	0 (n=41)	21.7 (n=180)	0 (n=41)	22.0 (n=132)	0 (n=40)	100 (n=3)	0 (n=2)
6° Bairro – Riverside	DM	1x	6.4 (n=63)	0 (n=23)	61.9 (n=63)	0 (n=23)	61.3 (n=62)	0 (n=23)	NA	NA
	DM	5x	24.4 (n=82)	NA	84.2 (n=82)	NA	84.3 (n=51)	NA	100 (n=1)	NA
7° Bairro A – Roadside	DM	1x	6.9 (n=101)	NA	11.9 (n=101)	NA	9.3 (n=97)	NA	100 (n=2)	NA
	DM	5x	29.2 (n=65)	0 (n=16)	72.3 (n=65)	0 (n=16)	71.0 (n=62)	0 (n=15)	NA	NA
7° Bairro A – Riverside	DM	1x	5.6 (n=107)	0 (n=25)	50.5 (n=107)	0 (n=25)	60.2 (n=103)	0 (n=26)	100 (n=4)	NA
	DM	5x	13.3 (n=83)	0 (n=16)	63.9 (n=83)	0 (n=16)	58.2 (n=79)	0 (n=15)	100 (n=1)	NA

Table S3. CDC bottle bioassay mortality data across the district following 30-minute (diagnostic time) and 120-minute (end of assay) exposure of bendiocarb at 1x the diagnostic dose (12.5ug/bottle). Following morphological identification, mortality data of *An. funestus s.s.* and *An. arabiensis* were calculated.

			All specimens		All specimens		An. funestus s.s.		An. arabiensis	
			30mins morta	lity	120mins mortality		120mins mortality		120 mins mortality	
	Insecticide	concentration	exposed	control	exposed	control	exposed	control	exposed	control
Chobela	BC	1x	100 (n=90)	0 (n=17)	100 (n=90)	0 (n=17)	100 (n=17)	0 (n=3)	100 (n=43)	0 (n=13)
Mulelemane	BC	1x	100 (n=90)	8.0 (n=25)	100 (n=90)	4.0 (n=25)	100 (n=1)	0 (n=1)	100 (n=89)	4.5 (n=22)
Palmeira	BC	1x	99 (n=104)	0 (n=19)	100 (n=104)	0 (n=19)	100 (n=105)	0 (n=19)	NA	NA
7° Bairro Roadside										
Ribangua	BC	1x	100 (n=73)	0 (n=17)	100 (n=73)	0 (n=17)	100 (n=66)	0 (n=17)	100 (n=7)	NA

Table S4. Genetic variability of 6 microsatellite loci in *Anopheles arabiensis* from Southern Mozambique. Number of alleles (N_{allele}), observed (H_o), expected heterozygosity (H_e), and inbreeding coefficient (F_{IS}) for each loci in *An. arabiensis* collected from five populations. Bold H_e indicate significant deviation (P < 0.00197) from Hardy-Weinberg equilibrium.

Locus		Populations							
		Chobela (N=33)	llha Josina (N=34)	Magude-Mulelemani (N=33)	Palmeira 1°/2°/4° Bairro (N=30)	Punguene (N=29)	Overall (n=159)		
	Nallele	5	6	6	4	5	6		
A CY1125	Ho	0.12121	0.11765	0.09091	0.06897	0.13793	0.10759		
AGXH25	H _e	0.66993	0.57682	0.58695	0.41077	0.51724	0.56645		
	Fis	0.82135	0.79847	0.84713	0.83456	0.73678	0.80936		
	Nallele	6	4	4	4	3	6		
AG2H85	H₀	0.42424	0.45455	0.27273	0.43333	0.31034	0.37975		
	H _e	0.69790	0.58415	0.64755	0.68079	0.66606	0.66050		
	F _{IS}	0.39582	0.22456	0.58261	0.36745	0.53846	0.42376		
	Nallele	7	7	9	7	7	12		
AC2111CA	H₀	0.45455	0.52941	0.72727	0.43333	0.62069	0.55346		
AG2H164	H _e	0.52121	0.69271	0.72914	0.55028	0.59952	0.62901		
	Fis	0.12965	0.23846	0.00260	0.21540	-0.03597	0.11010		
N _{allele}			2				2		
AC2U127	H₀	Manamarahia	0.00000		0.00000				
AG3H127	He	Monomorphic	0.16783			0.03784			
	Fis		1.00000		1.00000				
	N _{allele}	6	7	7	7	7	7		
A CYU100	H₀	0.54545	0.65625	0.66667	0.70000	0.60714	0.63462		
AGAHIUU	H _e	0.66107	0.65675	0.71329	0.77401	0.62468	0.68866		
	Fis	0.17714	0.00077	0.06631	0.09711	0.02857	0.07663		
	Nallele	14	11	15	9	9	18		
AC211240	Ho	0.64516	0.57576	0.61290	0.56667	0.64286	0.60784		
AG3H249	H _e	0.74352	0.72448	0.79376	0.63898	0.74935	0.73215		
	Fis	0.13420	0.20782	0.23077	0.11490	0.14437	0.16987		
	Nallele	7.6	6.2	8.2	6.2	6.2	8.5		
Maan aaraa las	H₀	0.43812	0.38894	0.47410	0.44046	0.46379	0.38054		
iviean across loci	H _e	0.65873	0.56712	0.69414	0.61097	0.63137	0.55244		
	F _{IS}	0.33226	0.30441	0.31231	0.27678	0.26036	0.29934		

Table S5. Genetic variability of 6 microsatellite loci in *Anopheles funestus s.s.* from Southern Mozambique. Number of alleles (N_{allele} , observed (H_o), expected heterozygosity (H_e), and inbreeding coefficient (F_{IS}) for each loci in *An. funestus* collected from five populations. Bold H_e indicate significant deviation (P < 0.00122) from Hardy-Weinberg equilibrium.

			Populations						
Locus		Punguene (n=45)	Ribangua (n=49)	3 de Fevereiro (n=53)	Bobole (n=33)	Macia (n=48)	Palmeira 1°/2°/4° Bairro (n=38)	Palmeira 7° Bairro Riverside (n=58)	Overall (n=324)
	Nallele	12	11	10	10	13	10	11	14
Fund	Ho	0.67442	0.62222	0.83019	0.74194	0.77778	0.78378	0.80000	0.75081
Fung	H _e	0.90315	0.88190	0.88266	0.87996	0.90637	0.81081	0.86722	0.89508
	Fis	0.25550	0.29680	0.05998	0.15905	0.14325	0.03378	0.07818	0.14555
	Nallele	4	5	5	4	5	3	5	10
	H₀	0.50000	0.38298	0.48148	0.40000	0.47826	0.48485	0.33929	0.43110
FunO	H _e	0.55669	0.57630	0.58001	0.54407	0.56355	0.57576	0.58526	0.57114
	Fis	0.10289	0.33786	0.17258	0.26814	0.15276	0.15997	0.42249	0.24581
	Nallele	11	12	11	11	13	9	9	19
	H₀	0.46341	0.47727	0.44000	0.50000	0.40909	0.36364	0.45098	0.44643
AFND6	H _e	0.86871	0.84065	0.82808	0.82208	0.83438	0.87844	0.84547	0.85004
	Fis	0.46964	0.43510	0.47118	0.39617	0.51259	0.59174	0.46907	0.47391
	N _{allele}	10	12	8	8	9	7	10	13
454022	H₀	0.40000	0.57143	0.49057	0.54545	0.52083	0.44737	0.51724	0.50000
AFND32	H _e	0.81448	0.84999	0.78365	0.82517	0.80570	0.80175	0.83763	0.82604
	Fis	0.51171	0.33001	0.37624	0.34247	0.35599	0.44533	0.38456	0.39080
	Nallele	8	8	7	7	6	6	6	9
	H₀	0.26471	0.17073	0.23077	0.26667	0.29032	0.21053	0.25000	0.23741
AFND40	H _e	0.82002	0.84372	0.77819	0.78305	0.81227	0.82000	0.78771	0.81571
	Fis	0.68047	0.79964	0.70549	0.66328	0.64637	0.74581	0.68474	0.70766
	Nallele	19	16	18	13	20	17	20	30
FueD	H₀	0.79545	0.81633	0.84314	0.81818	0.85417	0.76316	0.79310	0.81308
Fund	H _e	0.90596	0.91668	0.90526	0.88904	0.89803	0.90000	0.90690	0.90485
	F _{IS}	0.12322	0.11049	0.06926	0.08085	0.04933	0.15379	0.12644	0.10161
	Nallele	10.7	10.7	9.8	8.8	11.0	8.7	10.2	15.8
	H₀	0.51633	0.50683	0.55269	0.54537	0.55508	0.50889	0.52510	0.52980
iviean across IOCI	H _e	0.81150	0.81821	0.79298	0.79056	0.80338	0.79779	0.80503	0.81048
	Fis	0.27470	0.22116	0.14982	0.17466	0.15967	0.20316	0.18157	0.19390

Table S6. Linkage disequilibrium of six microsatellite loci for *An. funestus s.s.*. Statistically significant pairwise comparisons (P < 0.05) are indicated by "+" in black boxes with the exact P-value in bold. Linkage disequilibrium that is not significant is indicated with a "-" (P > 0.00341).

	FunG	FunO	AFND6	AFND32	AFND40	FunD
FunG	*					
FunO	+	*				
	(P= 0.00000)					
AFND6	-	+	*			
		(P= 0.00000)				
AFND32	-	-	-	*		
AFND40	-	+	+	-	*	
		(P= 0.012)	(P=0.006)			
FunD	+	-	-	-	-	*
	(P= 0.00000)					

Table S7. Analysis of molecular variance (AMOVA) of six microsatellite loci each in the An. arabiensis and An. funestus populations.

a) An. arabiensis

Populations	Sum of squares	Variance components	Percentage variation
Among populations	11.296	0.01053	0.63405
Among individuals within populations	327.771	0.50886	30.63518
Within individuals	178.500	1.14163	68.78077

b) An. funestus s.s.

Populations	Sum of squares	Variance components	Percentage variation
Among populations	28.291	0.01694	0.69575
Among individuals within populations	946.363	0.82898	34.03970
Within individuals	484.000	1.58941	65.26455

Table S8. Estimated number of migrants among a) An. arabiensis and b) An. funestus populations.

a) An. arabiensis

Populations	Punguene	Magude-Mulelemani	Palmeira 1°/2°/4° Bairro	Chobela	Ilha Josina
Punguene	*				
Magude-Mulelemani	47.3	*			
Palmeira 1°/2°/4° Bairro	16.9	24.8	*		
Chobela	26.5	30.4	23.7	*	
Ilha Josina	9.4	56.2	15.0	31.8	*

b) An. funestus s.s.

Populations	Punguene	Ribangua	3 de Fevereiro	Bobole	Macia	Palmeira 1°/2°/4° Bairro	Palmeira 7° Bairro Riverside
Punguene	*						
Ribangua	101.4	*					
3 de Fevereiro	53.4	33.4	*				
Bobole	17.7	21.9	16.7	*			
Macia	21.5	43.0	9.8	27.8	*		
Palmeira 1°/2°/4° Bairro	11.8	16.3	8.6	5.7	8.2	*	
Palmeira 7° Bairro Riverside	71.8	54.5	33.0	18.7	31.8	29.4	*

Table S9. Microsatellite primer sequences and primer labels for microsatellite analysis of a) Anopheles arabiensis and b) An. funestus.

a) An. arabiensis

Microsatellite	Primer	Primer sequence (5' to 3')
	AGXH25-F	/56-FAM/ GCC GAA AAC ATT CCA ACA GG
AGXH25	AGXH25-R	CAG TTA TGT CGG CAT GCT AC
AC21195	AG2H85-F	/5HEX/ ATT TAT CAT ACG GCG CCC AC
AGZH85	AG2H85-R	TTG AAA GGT TGC AAC GAG CGC G
AG2H164	AG2H164-F	/56-FAM/ GTG GTA CCT CTG TCA TAC CC
	AG2H164-R	ACA ACA AAA GGC ACC GCA GC
AC2U127	AG3H127-F	/5HEX/ CCT CTA ACT CGA TTA CCG TG
AGSH127	AG3H127-R	GTC AGG GAA TTG GAA AGA GC
	AGXH100-F	/56-FAM/ AGA AAG GAA ATG TAA CGC GG
AGXH100	AGHX100-R	CTT TCA TCT TGG CTG GCT GC
1024240	AG3H249F	/5HEX/ATG TTC CGC ACT TCC GAC AC
AG3H249	AG3H249-R	GCG AGC TAC AAC AAT GGA GC

b) An. funestus

Microsatellite	Primer	Primer sequence (5' to 3')
FunO	FunO-F	/5HEX/ GCA CAC ATT TCA GGC AGC
FullO	FunO-R	GCC CAC ATT CTG CAC CTT
FunC	FunG	/56-FAM/ GAG CAA GCA GCT TAC TGC AC
Fund	FunG-R	ACG TTC AGT GCA CAT CAA TG
AFND6	AFND6-F	/5HEX/ GCT TCT TCT CCC CTA ATC TG
	AFND6-R	TCC TGC TTT TTA GTT TGT CG
	AFND32-F	/56-FAM/ GAA GCA TTT TGG GTT AGA CTC
AFINDSZ	AFND32-R	GCA GTT GTT TAC CTT TCA CTG
FunD	FunD-F	/5HEX/ GCT AAC TAC TCC GAA GCG CT
FullD	FunD-R	GAT CGC AAA ACT TCC GGT T
	AFND40-F	/56-FAM/ ATT CAT CCT GTG ATG CTT TG
AFND40	AFND40-R	AGG CTC TTC TTT GCA CTG T

Figure S1. Spatial distribution of mortality of *Anopheles* spp populations in CDC bottle bioassays at 1x deltamethrin following a 30min exposure (A) and 120min exposure (B). Mortality following 120min exposure after mosquito identification is shown for *An. funestus s.s.* (C) and *An. gambiae s.l.* (predominantly *An. arabiensis*) (D). Levels of mortality are indicated by different colors ranging from less than 30% to over 98%, sample size of exposed mosquitoes in the bottles is demonstrated by the size of the circle. Palmeira data is from neighborhood 1°/2°/4° Bairro.

Figure S2. Spatial distribution of mortality of *Anopheles* spp populations in CDC bottle bioassays at 5x deltamethrin following a 30min exposure (A) and 120min exposure (B). Mortality following 120min exposure after mosquito identification is shown for *An. funestus s.s.* (C) and *An. gambiae s.l.* (predominantly *An. arabiensis*) (D). Levels of mortality are indicated by different colors ranging from less than 30% to over 98%, sample size of exposed mosquitoes in the bottles is demonstrated by the size of the circle. Palmeira data is from neighborhood 1°/2°/4° Bairro.

Figure S3. Estimated number of migrants per generation between two locations by distance (in kilometers) for *An. funestus s.s.* (A) and *An. arabiensis* (B). Trendline shows linear regression and p-value shows level of significance for the impact of distance.

a) An. arabiensis

Figure S4. Estimated population structure from STRUCTURE analyses for a) *Anopheles arabiensis* and b) *An. funestus*. The mean posterior probability LnPr(X|K) based on 5 replicated runs for each clusters K=1 to K=5 for *An. arabiensis* and K=1 to K=7 for *An. funestus*.