
Additional file 2: Principal component analysis and Hierarchical clustering 

Principal component analysis 
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Principal component analysis (PCA) is a data mining technique which aims to describe 

(highlight the similarity and dissimilarity between the statistical units and the correlations 

between the variables), summarize (determine a small number of new variables, uncorrelated 

linear combinations of the originals with maximal variance) and visualize the information 

contained in a data set. 

Let X be a dataset with n rows representing the statistical units and p columns representing the 

variables (with the mean of each variable to zero).   
 
 will then be the value of the variable j 

for the unit i. Let s
j
 be the standard deviation of the j

th
 variable. Let D be a diagonal matrix for 

the weights of the statistical units (frequently all the weights are equal to 1/n). 

The PCA studies first the statistical units in variables’ space with the purpose to find a 

viewable graphical representation of these units, such as units with similar values will be 

represented by close points and units with very different values will be represented by distant 

points. To do so, a mathematical distance must be chosen. A very commonly used distance 

between the points i and i’ is  (    )  √∑
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 (  
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   , but other distances can be 

used according to the purpose. The distance d is equivalent to set as metric on the space of the 

statistical units the diagonal matrix M such as      
 

(  )
 . 

Then, the aim of the PCA is to visualize these points. Since the space’s dimension (i.e. the 

number of variables) is in general important, it is necessary to project the points on an optimal 

sub-space of lower dimension, in order to have the most precise and faithful representation of 

the initial scatter plot. Hence, the PCA determines the sub-space Fr (with dimension r) which 



maximizes inertia of the projections of the points on Fr with respect to the barycenter G (i.e. 

the weighted sum of the squared distances between G and the projections on Fr). To do so, an 

iterative process is used and leads to determine a set of orthonormal vectors (  ⃗⃗⃗⃗      ⃗⃗⃗⃗      ⃗⃗⃗⃗ ) 

which constitute a base of Fr, where   ⃗⃗⃗⃗  is the eigenvector of the matrix X
T
DXM 

corresponding to the k
th

 largest eigenvalue,   . The axis (    ⃗⃗⃗⃗ ) is called the k
th

 principal axis 

and we obtain p principal axes, i.e the number of original variables. At this step, it is already 

possible to obtain the quality of representation and the contribution of each point on each 

principal axis. 

Statistically, a principal axis represents a linear combination of the original variables called 

principal component and can be interpreted as the linear combination with maximal variance 

of the units (  ) given the constraint to be uncorrelated with the previous components. The 

ratio  
  

       
 can also be statistically interpreted as the percentage of variance explained by 

the k
th

 factor. By construction, components are ordered from the one which explains the 

higher proportion of variance to the one which explains the less. 

The interpretation of the PCA follows different steps. First, the number of axes to keep must 

be chosen. Secondly, thanks to the correlation circle created by the PCA, it is possible to 

visualize the correlations between the variables. Then, we interpret the components by 

studying the correlations between them and the variables. The last step is the interpretation of 

the points representing the units using their projections on the principal planes. 

Hierarchical clustering 
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Hierarchical clustering (HC) is an unsupervised method of clustering which creates a 

hierarchy of classes (i.e. clusters), frequently used after a PCA or others data mining 

techniques. Let I be a set of n elements (           ) represented by points in    and d a 



distance between elements. The purpose is to find a partition in r classes which maximizes the 

between-classes inertia or, which is equivalent, which minimizes the within-classes inertia. 

This clustering criterion based on inertia allows creating classes homogeneous in their 

composition and heterogeneous between them. In practice, the search for a direct optimal 

solution requires generally too many computations and an approximation must be used. To do 

so, we use the algorithm of hierarchical clustering with a particular distance ∆ between classes 

(based on d). This distance, called Ward’s distance, is defined as following: Let I1 and I2 be 

two classes, p1 and p2 their respective weights, and G1 and G2 their respective barycenters, 

then the Ward’s distance between classes I1 and I2 is  (     )  
    

     
   (     ). 

The algorithm of hierarchical (ascending) clustering is then: 

- Step 1: from the partition containing all the singletons                    the 

distance   is computed for all the pairs of singletons. The classes {l} and {m}with the 

minimum distance ∆ are merged and then the partition with (n-1) elements obtained is 

                    .In others words, the two closest elements of I are merged in 

a single class while all the others remain singletons. 

- … 

- Step r: from the partition      with (n-(r-1)) elements, the distance is computed 

between the elements of the partition. The classes with the minimal distance ∆ are 

merged and the partition with (n-r) elements,   , is then created. The merge of these 

two classes is, by definition of the Ward’s distance, the one which minimize the loss 

of between-classes inertia among all the others possible merging at this step. 

- … 

- Step n-1: the partition created is          



The HC presents as results a dendrogram (illustrating for each step of the algorithm the loss of 

between-classes inertia). The first step in the interpretation of the results is to choose the 

number of classes to keep. Generally, the partition that is chosen is the one preceding a strong 

decrease in the between classes inertia. However, others partitions can be chosen according to 

the purpose of the clustering. Once the number of classes determined, it is possible to interpret 

each class thanks to the comparison of the descriptive statistics of the variables between the 

class and the whole set. 
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