	Variables	Methods	Principal findings
Asiskovitch (2010)	Health status: (1) LE at birth and (2) LE at age 65	Hierarchical panel-	Health expenditure has no statistically significant effect
	years.	data regression for 19	on either female or male LE at birth. However, strong
	Medical care: national health expenditure as % of GDP	OECD countries	impact of health care is identified in the case of those at
	- (1) total; (2) public and private separately.	(1990-2005).	age 65 for both genders. The results suggest that men's
	Control variables: (1) social expenditure; (2) GDP per		LE is more responsive to total health expenditure than
	capita; (3) gender-specific prevalence of smoking; (4)		women's LE (elasticities of total health expenditure:
	gender-specific prevalence of overweight or obesity;		$LE_F_0 = 0.004; LE_M_0 = -0.019; LE_F_65 = 0.083^a;$
	(5) nitrogen oxide emission.		$LE_M_{65} = 0.101^{a}$).
Barthold et	Health status: (1) LE at birth, (2) LE at age 40 years	Ordinary least squares	Health spending increases were associated with higher
	and (3) LE at 65 years.	regressions with	LE improvements for men than for women in nearly
	Medical care: cross-product between country dummy	heteroscedasticity-	every OECD country. Elasticities of health expenditure
	variables and national health expenditure per capita.	consistent (White)	for most efficient country (Germany): $LE_F_0 = 0.090^a$;
al. (2014)	Control variables: (1) social expenditure; (2) GDP per	standard errors for 27	$LE_M_0 = 0.155^{a}; LE_F_40 = 0.161^{a}; LE_M_40 =$
	capita.	OECD countries	0.272^{a} ; LE_F_65 = 0.279^{a} ; LE_M_65 = 0.490^{a} .
		(1991-2007).	
	Health status: LE at birth.	Data for the Eastern	LE of males is affected by health expenditure, however,
Bayati et al. (2013)	Medical care: (1) health expenditure as % of GDP; (2)	Mediterranean Region	the impact of spending for their longevity is negative
	one-year-olds immunized with measles-containing	(21 countries, 1995-	(elasticity:
	vaccine.	2007). Details on	-0.01^{b}). On the other hand, the respective elasticity for
	Control variables: (1) GDP per capita; (2) food	estimation method	female LE is positive but insignificant and its value is
	availability; (3) share of population employed; (4)	used not provided.	very low (0.001). The association between immunization
	human development index; (5) share of urban		rate and LE is insignificant and very low for both
	population; (6) carbon dioxide emission.		genders.
Crémieux et al. (2005)	Health status: (1) LE at birth; (2) LE at age 65 years;	Regression models	Both public and private drug expenditure in Canada
	(3) gender-specific infant mortality.	using feasible	affect health measures positively and elasticities for men
	Medical care: (1) public and (2) private drug spending	generalized least	are generally higher as compared to those for women.
	per capita; (3) non-drug health care spending.	squares for panel data	Additionally, total non-drug health care spending per
	Control variables: (1) GDP per capita; (2) population	with correction for	capita is statistically significant in the models concerned

 Table A1. Summary of results from previous studies concerned with gender-specific health production

	density; (3) poverty rate; (4) alcohol spending per	autocorrelation and	with male health and is not significant in any of the
	capita; (5) gender-specific tobacco spending per capita;	heteroscedasticity.	models explaining female health. Elasticities for public
	(6) food and non-alcoholic beverages spending.	Regional data from	drug spending: $LE_F_0 = 0.009^a$; $LE_M_0 = 0.011^a$;
		Canada (1981-1998).	$LE_F_{65} = 0.012^{a}; LE_M_{65} = 0.029^{a}.$
	Health status: (1) LE at birth; (2) LE at age 65 years;	Generalised least	Of the several models estimated, vast majority report
	(3) PYLL.	squares with	higher values of health care coefficient for males as
	Medical care: (1) total health spending per capita; (2)	correction for	compared to females, regardless of the health care
	health practitioners.	heteroscedasticity and	resources measure used. Elasticities for health
Joumard et	Control variables: (1) tobacco, (2) alcohol and (3) fruit	first order	practitioners: $LE_F_0 = 0.013^a$; $LE_M_0 = 0.017^a$;
al. (2008)	and vegetables consumption per capita; (4) emission of	autocorrelation with	$LE_F_{65} = 0.032^{b}$; $LE_M_{65} = 0.043^{b}$; $PYLL_F =$
	nitrogen oxide per capita; (5) share of population with	country fixed-effects	-0.089^{b} ; PYLL_M = -0.062 . Elasticities for health
	at least upper secondary education; (6) GDP per capita.	using OECD dataset	spending: LE_F_0 = 0.035 ^a ; LE_M_0 = 0.045 ^a ; LE_F_65
		(23 countries, 1981-	$= 0.051^{a}$; LE_M_65 $= 0.061^{a}$; PYLL_F $= -0.272^{a}$;
		2003).	$PYLL_M = -0.300^a$.
	Health status: (1) LE at age 65 years; (2) LE at age 80	Fixed-effects linear	The effect of non-pharmaceutical spending on LE and
	years; (3) PYLL.	models with first order	PYLL is low and insignificant for both genders and
	Medical care: (1) expenditure on pharmaceuticals per	autoregressive	regardless of age. The drug-specific expenditure
Lin at al	capita; (2) non-pharmaceuticals health expenditure.	disturbance with	elasticities for LE are slightly higher in the case of males
(2008)	Control variables: (1) GDP per capita; (2) emission of	covariates lagged for	while the respective PYLL coefficient is higher for
(2008)	sulphur oxide per capita; (3) gender-specific share of	five years. 14 OECD	females. Elasticities for drug spending: LE_F_65 =
	population who are daily smokers; (4) alcohol	countries (1980-2001).	0.033^{b} ; LE_M_65 = 0.037^{b} ; LE_F_80 = 0.029 ; LE_M_80
	consumption per capita; (5) fat, (6) sugar and (7) fruit		$= 0.050^{\text{b}}$; PYLL_F = -0.063; PYLL_M = -0.042.
	and vegetable consumption per capita.		
	Health status: LE at birth.	The generalised least	The elasticities of total health expenditure are the same
Nixon and	<u>Medical care</u> : (1) total health expenditure per capita; (2)	squares method is used	for men and women (0.022 ^a), however, the association
Ulmann	number of physicians per 10.000 population.	for fixed-effects	between physicians' density and LE is stronger for
(2006)	Control variables: (1) protein intake per capita; (2)	models (15 OECD	women (0.034^{a}) as compared to men (0.029^{a}) .
	emission of sulphur oxide per capita.	countries, 1980-1995).	
Or (2000)	Health status: PYLL.	The ordinary least	The level of health expenditure affects premature
	Medical care: (1) total health expenditure per capita; (2)	squares method is used	mortality of women more than in the case of men.

	share of public health expenditure.	to estimate models	According to the estimates the respective elasticity is
	Control variables: (1) GDP per capita; (2) share of	using OECD data (21	almost five times higher for females as compared to
	white-collar workers in total work force; (3) emission	countries, 1970-1992).	males (PYLL_F = -0.177^{a} ; PYLL_M = -0.038) and the
	of nitrogen oxide per capita; (4) butter, (5) sugar and		coefficient is significant only for women. The higher
	(6) alcohol consumption per capita; (7) expenditure on		share of public health expenditure is beneficial for both
	tobacco per capita.		genders with similar magnitude.
0 (2001)	Health status: (1) PYLL; (2) LE at age 65 years; (3)	The feasible	Premature mortality in general as well as caused by heart
	PYLL – heart diseases; (4) PYLL – cancer.	generalised least	diseases and cancer is affected by doctors availability
	Medical care: (1) number of active physicians per 1000	square method is used	stronger in the case of women than men (elasticities:
	population; (2) share of public expenditure in total	to estimate models in	$PYLL_F = -0.376^{a}; PYLL_M = -0.275^{a}; PYLL_F_Heart$
	health expenditure; (3-8) set of dummy variables	order to correct for	= -0.658 ^a ; PYLL_M_Heart = -0.573 ^a ; PYLL_F_Cancer
	representing institutional characteristics of health care	cross-section	$= -0.185^{a}$; PYLL_M_Cancer $= -0.018$). On the other
Or (2001)	systems.	heteroscedasticity and	hand, the elasticities for LE at the age of 65 years are the
	Control variables: (1) GDP per capita; (2) share of	for autocorrelation	same for both genders (0.100^{a}) .
	white-collar workers in total work force; (3) tobacco	specific to each unit.	
	and (4) alcohol consumption per capita; (5) emission of	The data refer to 21	
	nitrogen oxide per capita.	OECD countries	
		(1970-1995).	
Poças and Soukiazis (2010)	Health status: (1) LE at birth; (2) LE at the age of 65	The instrumental	Arguing that health care inputs should rather be proxied
	years.	variables approach	by doctors' consultations instead of doctors' density or
	Medical care: doctors' (ambulatory) consultations per	(two step generalized	health expenditure, the study finds that health care
	capita.	method of moments) is	contributes to LE at birth and at the age of 65 only in the
	Control variables: (1) income per capita; (2) average	used for data from 17	case of women, while coefficients of men's LEs are
	years of education in population aged 25-64; (3)	OECD countries	highly insignificant. The elasticities for doctors'
	tobacco and (4) alcohol consumption.	(1980-2004).	consultations: $LE_F_0 = 0.028^{a}$; $LE_M_0 = 0.007$;
			$LE_F_{65} = 0.064^{a}$; $LE_M_{65} = 0.021$.

Notes: $LE - life expectancy; PYLL - potential years of life lost; LE_F_x - female life expectancy at the age of x years; LE_M_x - male life expectancy at the age of x years; PYLL_F - female potential years of life lost; PYLL_M - male potential years of life lost; GDP - gross domestic product; a, b, c - coefficients significant at the 0.01, 0.05 and 0.1 levels, respectively.$

References

- 1. Asiskovitch S. Gender and health outcomes: The impact of healthcare systems and their financing on life expectancy of women and men. Soc Sci Med. 2010;70:886–895.
- 2. Barthold D, Nandi A, Rodríguez JMM, Heymann J. Analyzing whether countries are equally efficient at improving longevity for men and women. Am J Public Health. 2014;104:2163–2169.
- 3. Bayati M, Akbarian R, Kavosi Z. Determinants of life expectancy in Eastern Mediterranean Region: a health production function. Int J Health Policy Manag. 2013;1:57–61.
- 4. Crémieux PY, Meilleur MC, Ouellette P, Petit P, Zelder M, Potvin K. Public and private pharmaceutical spending as determinants of health outcomes in Canada. Health Econ. 2005;14:107–116.
- 5. Joumard I, Andre C, Nicq C, Chatal O. Health status determinants: Lifestyle, environment, health care resources and efficiency. OECD Economics Department Working Papers. 2008;627.
- 6. Liu L, Cline RR, Schondelmeyer SW, Schommer JC. Pharmaceutical expenditures as a correlate of population health in industrialized nations. Ann Pharmacother. 2008;42:368–374.
- 7. Nixon J, Ulmann P. The relationship between health care expenditure and health outcomes. Eur J Health Econ. 2006;7:7–18.
- 8. Or Z. Determinants of health outcomes in industrialised countries: a pooled, cross-country, time-series analysis. OECD Econ Stud. 2000;30:55–77.
- 9. Or Z. Exploring the effects of health care on mortality across OECD countries. OECD Labour Market and Social Policy Occasional Papers. 2001;46.
- 10. Poças A, Soukiazis E. Health status determinants in the OECD countries. A panel data approach with endogenous regressors. GEMF Working Papers. 2010;4.