Supplemental Figure 1. Schinke et al.

	<u>SVM A</u>				
	Sample (i)	n _i	m _i	Mi	n _i M _i
Schnabel Equation:	1	32	0	0	0
$N = \underline{\sum (n_i M_i)}$	2	36	0	32	1152
	3	43	1	68	2924
(Z) +1	4	51	0	111	5661
	5	29	0	162	4698
				Ν	7.22x10 ³

Supplemental Figure S1. Determining the clonality of LV integrants. To estimate the clonality of the transduced LNcaP cells the Schnabel method of multiple census Mark-Recapture was used. As an example, the data is shown for the clonality calculation of sample SVM A. n_i – the number of unique integration sites captured in the *i*th sample; m_i – the number of previously identified integration sites captured in the *i*the sample; M_i – the number of previously identified integration sites in the population prior to the *i*th sample, where $M_1 = 0$; N – the unknown size of the population just prior to the first sample. Each new sequencing sample is considered the next subsequent ith sample. If an integration site was recovered, or "recaptured", in a previous *i*th sample, this integrant is counted under the variable m_i. The variable Σ m_i is inversely proportional to the clonality of the population, as this variable represents the amount of recapture present in the analysis of the population. The less recapture there is, the more polyclonal the population is. The variable M_i comprises all of the integrations previously identified prior to the current survey ($M_i = n_{i-1} + n_{i-2}$ + ..., etc.). For example, M_i when i = 2 is equivalent to 32, or n_i . Similarly, when i =3, M_i equals 68 or $n_1 + n_2$. Thus, the cumulative nature of M_i is of crucial importance.