

Supplementary Figure S1. Schematic representation of the exons belonging to the different transcript variants of human BRAF reported in NCBI and Ensembl.

(top) Human BRAF is located on chromosome 7q34 and is transcribed in the antisense orientation. Ensembl Genome Browser

(http://www.ensembl.org/index.html) reports 5 BRAF transcript variants that are named BRAF-001, -002, -003, -004, and -005, with BRAF-001 being the reference. Analogously, NCBI (http://www.ncbi.nlm.nih.gov/nucleotide/) reports 10 BRAF transcripts, the reference (NM_004333.4) and X1 to X9 variants. (bottom) Enlargement of the 3'end of BRAF gene (exon 14-19). Exons NE1-6 and E19 are not present in the reference sequence. E18.1-5 are 5 variants of exon 18 that differ in

their length (see Supplementary Table S1).

RefSed Genes

Supplementary Figure S2. Scan of exon 18 of *BRAF* **in 8 cancer types.** Analysis of the length of *BRAF* 3'UTR by counting the reads that map to E18.1,2,3,4, and 5.

Supplementary Figure S3. Count of the reads mapping to all *BRAF* exons, E19 included.

(a) Colon cancer. (b) Lung adenocarcinoma. (c) Melanoma. (d) Thyroid cancer.

Supplementary Figure S4. Count of reads mapping to all *BRAF* exons (w/o E19 on the left and w E19 on the right).

(a) Breast cancer. (b) Head and neck cancer. (c) Lung SCC. (d) AML. (e) DLBCL.

Supplementary Figure S5. Count of E13-E16 exon-spanning reads.

Supplementary Figure S6. BRAF-004 transcript variant is expressed but it is truncated.

(a) Schematic representation of E3 and NE6. The NE6-specific region is called NE6p. The primers used for PCR and/or qRT-PCR experiments are indicated as arrows. (b) Sanger sequencing of the PCR product obtained using *BRAF*-E1/2 F primer and *BRAF*-NE6p qRT-PCR R primer on the cDNA of A375 melanoma cells. The sequencing confirms that NE6 exon is transcribed. (c) Real-time PCR performed on the cDNA obtained from the indicated melanoma cell lines and the vemurafenib-resistant A375 C2 clone (see Fig. 6). In grey, the expression level of full length *BRAF* transcripts plus *BRAF*-004; in red, the expression level of full length *BRAF* transcripts; in orange, the expression level of *BRAF*-004. The graph represents the mean±SEM of 3 independent experiments. (d) PCR analysis of the *BRAF*-004 transcript variant using the indicated primer pairs (refer to panel **a** for positions). The presence of the expected PCR band in lane 2 confirms that NE6 is transcribed. However, the absence of the longer PCR product in lane 3, 4, 6 and 7, as well as the absence of any PCR product in lane 5 and 8 indicate that, downstream of NE6, *BRAF*-004 is truncated. Lane 1: 100bp ladder. (**e-m**) Count of the reads that span E2-E3 (full length *BRAF* transcripts plus *BRAF*-004), E3-E4 (full length *BRAF* transcripts) and E3-NE6p (*BRAF*-004) is truncated downstream of the NE6 exon. The presence of E3-NE6p spanning reads confirms that NE6p is transcribed. The absence of the NE6 exon. The lower counts of E2-E3 exon-spanning reads compared to E3-E4 exon-spanning reads has to be considered a technical artifact due to the bias that RNA-seq data obtained from polyA libraries have against the 5'end exons (see main text).

Supplementary Figure S7. Position of the primers/siRNAs used to detect/downregulate *BRAF*-ref, *BRAF*-X1, and *BRAF*-X2.

Exon 17, 18 and 19 are represented in red, grey and black, respectively. The 3'UTRs are in white.

ref*BRAF* qRT-PCR F/R, the primers used for real-time PCR amplification of *BRAF*-ref, are represented as grey arrows, while the siRNA used to knock-down this isoform (si-ref*BRAF*) is represented as a yellow and grey rectangle.

The primers used for real-time PCR amplification of *BRAF*-X1, *BRAF*-X2 and *BRAF*-X1 plus X2 are represented as blue, green and black arrows, respectively. They are called *BRAF*-X1 qRT-PCR F/R (1 pair), *BRAF*-X2 qRT-PCR F/R (1 pair) and *BRAF*-E19-1/2/3/4 qRT-PCR F/R (4 pairs).

The 4 primer pairs used for PCR amplification of *BRAF*-X1 plus X2 (*BRAF*-E19-1/2/3/4 F/R) are represented as open pink arrows. *BRAF*-E19-1 qRT-PCR F and *BRAF*-E19-1 F have the same sequence.

The siRNAs used to knock-down *BRAF*-X1 plus X2 (si-*BRAF*-E19-1/2/3) are represented as yellow and black rectangles.

The primers used for real-time PCR amplification of all *BRAF* isoforms (tot*BRAF* qRT-PCR F/R) are represented as red arrows, while the siRNA used for their knock-down (si-tot*BRAF*) is represented as a yellow and red rectangle.

Supplementary Figure S8. Real-time PCR detection of *BRAF*-ref, *BRAF*-X1 plus X2, *BRAF*-X1, and *BRAF*-X2. (a) Melanoma cell lines. (b) Cell lines derived from solid tumors. (c) Leukemia and lymphoma cell lines. (d) Leukemia and lymphoma patients. The expression level of *BRAF*-X1 plus X2 is taken as 1. *BRAF*-ref: grey; *BRAF*-X1 plus X2: black; *BRAF*-X1: blue; *BRAF*-X2: green. The graphs represent the mean±SEM of 3 independent experiments.

Supplementary Figure S9. Box plot of the reads that span E17-E18.2, E18.2-E18b, E18.2-E19, and E17-E19.

(a) Breast cancer. (b) Head and neck cancer. (c) Lung SCC. (d) AML. (e) DLBCL. For the color code, please refer to Figure 1c.

Supplementary Figure S10. Stability of reference and X1/X2 BRAF mRNA.

Real-time PCR quantification of *BRAF* isoforms at the indicated time points after treatment with 10ug/ml actinomycin D (ACTD). (a) A375 cells (homozygous BRAFV600E). (b) MeWo cells (wt BRAF). The graphs represent the mean of 3 independent experiments.

Supplementary Figure S11. Correlation among the expression levels of the different *BRAF* isoforms in breast cancer, head and neck cancer, lung SCC, AML, and DLBCL. (a,d,g,j,m) Total number of *BRAF* reads across patients. (b,e,h,k,n) Expression ratios over the ref spanning reads. Samples were sorted by reads spanning E18.2-E18b (*BRAF*-ref, in black). Red dots are E18.2-E19/E18.2-E18b ratios (which means the X1/ref ratio) and blue dots are E17-E19/E18.2-E18b ratios (which means the X2/ref ratio). The data points are log transformed and the dotted line marks the 0, which means X1/ref ratio = 1 and X2/ref ratio = 1. (c,f,i,l,o) Expression ratios over the X1 spanning reads. Samples were sorted by reads spanning E18.2-E19 (*BRAF*-X1, in red). Black dots are E18.2-E18b/E18.2-E19 ratios (which means the Y2/r1 ratio). The data points are log transformed and the dotted line marks the 0, which means the ref/X1 ratio) and blue dots are E17-E19/E18.2-E19 ratios (which means the Y2/r1 ratio). The data points are log transformed and the dotted line marks the 1. and X2/X1 ratio = 1 and X2/X1 ratio = 1. (c,f,i,l,o) Expression ratios (which means the Y2/r1 ratio). The data points are log transformed and the dotted line marks the 0, which means the Y2/X1 ratio = 1. In the left and middle panels the samples are presented in the same order.

Supplementary Figure S12. Lack of association of reference, X1 and X2 *BRAF* levels with age (left panels), gender (middle panels), and stage at diagnosis in primary and metastatic melanoma patients.

The number of reads that span E18.2-18b (*BRAF*-ref, black), E18.2-19 (*BRAF*-X1, red), and E17-19 (*BRAF*-X2, blue) are reported.

Primary tumors: age range 24-90years (n = 103); n=43 females, n=60 males.

Metastatic tumors: age range 15-87years (n = 357); n=136 females, n=229 males; Stage I n=76, Stage II n=74, Stage III n=140, Stage IV n=20.

Supplementary Figure S13. Lack of association of age (left panels), gender (middle panels), and stage at diagnosis (right panels) with the ratio between *BRAF*-X1 and *BRAF*-ref levels (upper panels, red) and with the ratio between *BRAF*-X2 and *BRAF*-ref levels (lower panels, blue) in primary and metastatic melanoma patients.

Primary tumors: age range 24-90years (n = 103); n=43 females, n=60 males.

Metastatic tumors: age range 15-87years (n = 357); n=136 females, n=229 males; Stage I n=76, Stage II n=74, Stage III n=140, Stage IV n=20.

b

Expected size							
	BRAF-X1*	BRAF-X2**					
E7 F	1606	1452					
E8 F	1505	1351					
E9-1() 1356	1202					

Supplementary Figure S14. Tools for the detection of *BRAF* CDS plus the E19-derived 3'UTR.

(a) Primers location. The forward primers used for PCR amplification of *BRAF*-X1 and *BRAF*-X2 CDS (*BRAF*-E7 F, *BRAF*-E8 F, *BRAF*-E9-10 F) are represented as open red arrows. They were used together with *BRAF*-E19-1 qRT-PCR R (open black arrow). (b) Results of the PCR performed on A375 melanoma cells. The detection of a PCR doublet indicates that both *BRAF*-X1 and *BRAF*-X2 variants are expressed. In addition, it confirms that *BRAF* CDS and the E19-derived 3'UTR coexist in the same RNA molecule. In turn, this result rules out the possibility that the E19-derived 3'UTR is part only of *BRAF*-003 truncated transcript.

Supplementary Figure S15. Length of *BRAF*-X1 and *BRAF*-X2 3'UTR in melanoma.

Expression levels of *BRAF* CDS (detected using the tot*BRAF* qRT-PCR primers) and of different regions of the 3'UTR transcribed from E19 (detected using the *BRAF*-E19-1/2/3/4 qRT-PCR primer pairs) after the transfection of si-*BRAF*-E19-1 in 501Mel (a) and MeWo cells (b). The graphs represent the mean \pm SD of 3 independent experiments.

Supplementary Figure S16. siRNA-mediated downregulation of *BRAF* isoforms in melanoma cells.

Real-time PCR detection of total *BRAF*, *BRAF*-ref and *BRAF*-X1 plus X2 24h after the transfection of the indicated siRNAs in 501Mel (a) and in MeWo cells (b). The graphs represent the mean±SD of 3 independent experiments.*p<0.05, **p<0.01.

Supplementary Figure S17. Cartoon summarizing the position of the primers and the siRNAs used to determine the levels and the identity of the Δ [3-10] splicing variant of *BRAF*.

The PCR amplification of Δ [3-10]*BRAF* in its reference and X1/X2 isoforms was obtained using the *BRAF*-E1/2 F primer (red open arrow) and reverse primers that recognize the 3' end of *BRAF*-ref CDS (ref*BRAF*-STOP R) or *BRAF*-X1/X2 CDS (*BRAF*-X1-STOP R) (grey and black open arrow, respectively). The primers used for real-time PCR amplification of all *BRAF* isoforms (tot*BRAF* qRT-PCR F/R), *BRAF*-ref (ref*BRAF* qRT-PCR F/R), *BRAF*-X1 plus X2 (*BRAF*-E19-1 qRT-PCR F/R), *BRAF*-X1 (*BRAF*-X1 qRT-PCR F/R), *BRAF*-X2 (*BRAF*-X2 qRT-PCR F/R), full length *BRAF* (fl*BRAF* qRT-PCR F/R) and Δ [3-10]*BRAF* splicing variant (Δ [3-10]*BRAF* qRT-PCR F/R) are represented as red, grey, black, blue, green, brown and orange arrows, respectively. Analogously, the siRNAs used for the knock-down of all *BRAF* isoforms (si-tot*BRAF*), *BRAF*-ref (si-ref*BRAF*), *BRAF*-X1 plus X2 (si-*BRAF*-E19-1), full length *BRAF* (si-fl*BRAF*) and Δ [3-10]*BRAF* splicing variant (si- Δ [3-10]*BRAF*) are represented as yellow rectangles filled with red, grey, black, brown and orange, respectively.

Supplementary Figure S18. Real-time PCR detection of *BRAF*-ref (grey) and *BRAF*-X1 plus X2 (black) in vemurafenib-resistant clones and clonal populations.

(*left*) P: parental A375 cells; A375 C1: vemurafenib-resistant clone carrying the Δ [3-10]BRAFV600E splicing variant; A375 C2: vemurafenib-resistant clone carrying the Δ [3-10]BRAFV600E splicing variant; A375 C3: vemurafenib-resistant clone carrying the Δ [3-8]BRAFV600E splicing variant; A375 P1: vemurafenib-resistant clonal population carrying the Δ [2-10]BRAFV600E splicing variant.

(*right*) P: parental 501Mel cells; 501Mel P1: vemurafenib-resistant clonal population carrying the Δ [3-10]BRAFV600E splicing variant.

The graphs represent the mean±SEM of 3 independent experiments.

Supplementary Figure S19. The 3'UTR of X1 and X2 Δ [3-10]*BRAF* splicing variant is up to 7kb long. (a) Real-time PCR detection of *BRAF*-X1 plus X2 24h after the transfection of si- Δ [3-10]*BRAF* in A375 C2 cells. Expression levels were detected using the 4 primer pairs that are located along the E19-derived 3'UTR. (b) Real-time PCR detection of Δ [3-10]*BRAF* 24h after the transfection of si-*BRAF*-E19-1, si-*BRAF*-E19-2, si-*BRAF*-E19-3 or their mix in A375 C2 cells. The graphs represent the mean±SEM of 3 independent experiments. *p<0.05, **p<0.01.

a

b

a Reference BRAF 766aa 84306MW

NP_004324.2 (http://www.ncbi.nlm.nih.gov/protein/NP_004324.2)

1 maalsggggg gaepgqalfn gdmepeagag agaaassaad paipeevwni kqmikltqeh 61 iealldkfgg ehnppsiyle ayeeytskld alqqreqqll eslgngtdfs vsssasmdtv 121 tssssslsv lpsslsvfqn ptdvarsnpk spqkpivrvf lpnkqrtvvp arcgvtvrds 181 lkkalmmrgl ipeccavyri qdgekkpigw dtdiswltge elhvevlenv pltthnfvrk 241 tfftlafcdf crkllfqgfr cqtcgykfhq rcstevplmc vnydqldllf vskffehhpi 301 pqeeaslaet altsgsspsa pasdsigpqi ltspspsksi pipqpfrpad edhrnqfgqr 3 421 gpqrerksss ssedrnrmkt lgrrdssddw eipdgqitvg qrigsgsfgt vykgkwhgdv 481 avkmlnvtap tpqqlqafkn evgvlrktrh vnillfmgys tkpqlaivtq wcegsslyhh 541 lhiietkfem iklidiarqt aqgmdylhak siihrdlksn niflhedltv kigdfglatv 601 ksrwsgshqf eqlsgsilwm apevirmqdk npysfqsdvy afgivlyelm tgqlpysnin 661 nrdqiifmvg rgylspdlsk vrsncpkamk rlmaeclkkk rderplfpqi lasiellars 721 lpkihrsase pslnragfqt edfslyacas pktpiqaggy g**afpvh**

BRAF-X1 767aa 84448MW XP 005250102.1 (http://www.ncbi.nlm.nih.gov/protein/XP 005250102.1)

1 maalsggggg gaepgqalfn gdmepeagag agaaassaad paipeevwni kqmikltqeh 61 iealldkfgg ehnppsiyle ayeeytskld alqqreqqll eslgngtdfs vsssasmdtv 121 tssssslsv lpsslsvfqn ptdvarsnpk spqkpivrvf lpnkqrtvvp arcgvtvrds 181 lkkalmmrgl ipeccavyri qdgekkpigw dtdiswltge elhvevlenv pltthnfvrk 241 tfftlafcdf crkllfqgfr cqtcgykfhq rcstevplmc vnydqldllf vskffehhpi 301 pqeeaslaet altsgsspsa pasdsigpqi ltspspsksi pipqpfrpad edhrnqfgqr 361 drsssapnvh intiepvnid dlirdqgfrg dggsttglsa tppaslpgsl tnvkalqksp 421 gpqrerkss ssedrnrmkt lgrrdssddw eipdgqitvg qrigsgsfgt vykgkwhgdv 481 avkmlnvtap tpqqlqafkn evgvlrktrh vnillfmgys tkpqlaivtq wcegsslyhh 541 lhiietkfem iklidiarqt aqgmdylhak siihrdlksn niflhedltv kigdfglatv 601 ksrwsgshqf eqlsgsilwm apevirmqdk npysfqsdvy afgivlyelm tgqlpysnin 661 nrdqiifmvg rgylspdlsk vrsncpkamk rlmaeclkkk rderplfpqi lasiellars 721 lpkihrsase pslnragfqt edfslyacas pktpiqaggy g<mark>efaafk</mark>

BRAF-X2 758aa 83843MW С XP 005250103.1 (http://www.ncbi.nlm.nih.gov/protein/XP 005250103.1) maalsggggg gaepgqalfn gdmepeagag agaaassaad paipeevwni kqmikltqeh 61 iealldkfgg ehnppsiyle ayeeytskld alggreggll eslgngtdfs vsssasmdtv 121 tsssssslsv lpsslsvfqn ptdvarsnpk spqkpivrvf lpnkqrtvvp arcgvtvrds 181 lkkalmmrgl ipeccavyri qdgekkpigw dtdiswltge elhvevlenv pltthnfvrk 241 tfftlafcdf crkllfqgfr cqtcgykfhq rcstevplmc vnydqldllf vskffehhpi 301 pqeeaslaet altsgsspsa pasdsigpqi ltspspsksi pipqpfrpad edhrnqfgqr 361 drsssapnvh intiepvnid dlirdqgfrg dggsttglsa tppaslpgsl tnvkalqksp 421 gpgrerksss ssedrnrmkt lgrrdssddw eipdggitvg grigsgsfgt vykgkwhgdv 481 avkmlnvtap tpgqlqafkn evgvlrktrh vnillfmgys tkpqlaivtq wcegsslyhh 541 lhiietkfem iklidiarqt aqgmdylhak siihrdlksn niflhedltv kigdfglatv 601 ksrwsgshqf eqlsgsilwm apevirmqdk npysfqsdvy afgivlyelm tgqlpysnin 661 nrdqiifmvg rgylspdlsk vrsncpkamk rlmaeclkkk rderplfpge nlqpssshhh 721 gsicsyflsl vfvqfvnikt qfcssnlflk iqnfqcis

Supplementary Figure S20. Sequence of reference, X1, and X2 BRAF proteins.

The isoform-specific amino acids are highlighted in grey (reference, **a**), blue (X1, **b**), and green (X2, **c**).

Human BRAF-ref vs mouse Braf-ref

695/806(86%) 703/806(87%) 90/806(11%)

1	MAALSGGGGGGAEPGQALFNGDMEPEAGAGAGAAASSAADPAIPEEVWNIKQMIKLTQEHI	61
1	MAALSGGGGSSSGGGGGGGGGGGGGGGGGGGGGGGGGGGG	78
62	EALLDKFGGEHNPPSIYLEAYEEYTSKLDALQQREQQLLESLGNGTDFSVSSSASMDTVTSSSSSSLSVLPSSLSVFQNP	141
79	EALLDKFGGEHNPPSIYLEAYEEYTSKLDALQQREQQLLESLVFQTP	125
142	TD VARS NPKSPQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKALMMRGLIPECCAVYRIQDGEKKPIGWDTDISWLTGEE	221
126	TDASRNNPKSPQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKALMMRGLIPECCAVYRIQDGEKKPIGWDTDISWLTGEE	205
222	eq:lenvpltthnfvrktfftlafcdfcrkllfqgfrcqtcgykfhqrcstevplmcvnydqldllfvskffehhpipptprcqtgykfhqrcstevplmcvnydqldllfvskffehhpipptprcqtcgykfhqrcstevplmcvqtcgykfhqrcstevplmcvnydqldllfvskffehhpipptprcqtrcqtrcqtrcqtrcqtrcqtrcqtrcqtrcqtrcqt	301
206	LHVEVLENVPLTTHNFVRKTFFTLAFCDFCRKLLFQGFRCQTCGYKFHQRCSTEVPLMCVNYDQLDLLFVSKFFEHHPVP	285
302	QEEASLAETALTSGSSPSAPASDSIGPQILTSPSPSKSIPIPQPFRPADEDHRNQFGQRDRSSSAPNVHINTIEPVNID-	380
286	QEEASFPETALPSGSS-SAPPSDSTGPQILTSPSPSKSIPIPQPFRPADEDHRNQFGQRDRSSSAPNVHINTIEPVNIDE	364
381	DLIRDQGFRGDGGSTTGLSATPPASLPGS	409
365	KFPEVELQDQRDLIRDQGFRGDGAPLNQLMRCLRKYQSRTPSPLLHSVPSEIVFDFEPGPVFRGSTTGLSATPPASLPGS	444
410	LTNVKALQKSPGPQRERKSSSSSEDRNRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNV	487
445	LTNVKALQKSPGPQRERKSSSSSSSEDRSRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNV	524
488	TAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIVTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYL	567
525	TAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIVTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYL	604
568	HAKSIIHRDLKSNNIFLHEDLTVKIGDFGLATVKSRWSGSHQFEQLSGSILWMAPEVIRMQDKNPYSFQSDVYAFGIVLY	647
605	HAKSIIHRDLKSNNIFLHEDLTVKIGDFGLATVKSRWSGSHQFEQLSGSILWMAPEVIRMQDKNPYSFQSDVYAFGIVLY	684
648	ELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECLKKKRDERPLFPQILASIELLARSLPKIHRS	727
685	ELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECLKKKRDERPLFPQILASIELLARSLPKIHRS	764
728	ASEPSLNRAGFQTEDFSLYACASPKTPIQAGGYGAFPVH- 766	
765	ASEPSLNRAGFQTEDFSLYACASPKTPIQAGGYGEFAAFK 804	

Human BRAF-X1 vs mouse Braf-ref

302	QEEASLAETALTSGSSPSAPASDSIGPQILTSPSPSKSIPIPQPFRPADEDHRNQFGQRDRSSSAPNVHINTIEPVNID-	380
286	$\label{eq:certain} QEEAS \texttt{FPETALP} SGSS-SAPPS DSTGPQILTSPSPSKSIPIPQPFRPADED HRNQFGQRDRSSSAPNVHINTIEPVNIDE$	364
381	DLIRDOGFRGDGGSTTGLSATPPASLPGS	409

365	KFPEVELQDQRDLIRDQGFRGDGAPLNQLMRCLRKYQSRTPSPLLHSVPSEIVFDFEPGPVFRGSTTGLSATPPASLPGS	444
410	LTNVKALQKSPGPQRERKSSSSSEDRNRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNV	487
445	$\verb LTNVKALQKSPGPQRERKSSSSSSSEDRSRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNV $	524

- 488 TAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIVTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYL567 525 TAPTPOOLOAFKNEVGVLRKTRHVNILLFMGYSTKPOLAIVTOWCEGSSLYHHLHIIETKFEMIKLIDIAROTAOGMDYL 604 568 HAKSTTHRDLKSNNTFLHEDLTVKTGDFGLATVKSRWSGSHOFEOLSGSTLWMAPEVTRMODKNPYSFOSDVYAFGTVLY 647
- 605 HAKSIIHRDLKSNNIFLHEDLTVKIGDFGLATVKSRWSGSHQFEQLSGSILWMAPEVIRMQDKNPYSFQSDVYAFGIVLY 684
- 648 ELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECLKKKRDERPLFPQILASIELLARSLPKIHRS 727
- 685 ELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECLKKKRDERPLFPQILASIELLARSLPKIHRS 764
- 728 ASEPSLNRAGFQTEDFSLYACASPKTPIQAGGY 767
- 765 ASEPSLNRAGFQTEDFSLYACASPKTPIQAGGY 804

1

1

Supplementary Figure S21. Alignment between the sequence of human BRAF-ref (NP_004324.2, left) or BRAF-X1 (XP_005250102.1, right) and mouse Braf-ref (NP_647455.3).

The blue box highlights the identity between the C-terminal amino acids of human BRAF-X1 (and not of human BRAF-ref) and mouse Braf-ref.

Human BRAF-X1 vs rat Braf-X1

Supplementary Figure S22. Alignment between the sequence of human BRAF-ref (NP_004324.2, left) or BRAF-X1 (XP_005250102.1, right) and rat Braf-X1 (XP_001070228.2).

The blue box highlights the identity between the C-terminal amino acids of human BRAF-X1 (and not of human BRAF-ref) and rat Braf-X1. In the rat there are 4 predicted Braf variants among which the X1 is the longest.

Supplementary Figure S23. Alignment between the sequence of human BRAF-ref (NP_004324.2, left) or BRAF-X1 (XP_005250102.1, right) and pig Braf-X1 (XP_005654324.1).

The blue box highlights the identity between the C-terminal amino acids of human BRAF-X1 (and not of human BRAF-ref) and pig Braf-X1. In the pig there are 3 predicted Braf variants among which the X1 is the longest.

Supplementary Figure S24. Dot plot of the secondary structure of *BRAF-X1* (blue) and *BRAF-X2* (green) mRNA sequences. The most stable secondary structures of *BRAF-X1* mRNA (9464nt, starting from the ATG) and *BRAF-X2* mRNA (9310nt, starting from the ATG) were predicted using UNAfold program version 3.8 and were used to build the dot plot (see Methods for details). The dots located on the diagonal represent secondary structures that are shared by the 2 mRNA molecules (grey), while the green and blue dots represent isoform-specific secondary structures. The red boxes highlight the regions of highest dissimilarity. The dotted line marks the position of the STOP codon.

Supplementary Figure S25. Enlargement of box1 as reported in Supplementary Figure S24.

In spite of the fact that the region missing in the X2 isoform is only the one highlighted in orange (154nt), the direct splicing of exon 17 with exon 19 that occurs in the *BRAF*-X2 variant causes changes in the secondary structure of the mRNA molecule that extend way upstream in the coding sequence and downstream in the 3'UTR (the involved region encompasses approximately nt. 1500-4000).

a **BRAF-ref**

Serine/threonine-protein kinase B-raf OS=Homo sapiens GN=BRAF PE=1 SV=4 - [BRAF_HUMAN]

MAALSGGGGG	GAEPGQALFN	GDMEPEAGAG	AGAAASSAAD	PAIPEEVWNI	KQMIKLTQEH	IEALLDKFGG	EHNPPSIYLE
AYEEYTSKLD	ALQQREQQLL	ESLGNGTDFS	VSSSASMDTV	TSSSSSSLSV	LPSSLSVFQN	PTDVARSNPK	SPQKPIVRVF
LPNKQRTVVP	ARCGVTVRDS	LKKALMMRGL	IPECCAVYRI	QDGEKKPIGW	DTDISWLTGE	ELHVEVLENV	PLTTHNFVRK
TFFTLAFCDF	CRKLLFQGFR	CQTCGYKFHQ	RCSTEVPLMC	VNYDQLDLLF	VSKFFEHHPI	PQEEASLAET	ALTSGSSPSA
PASDSIGPQI	LTSPSPSKSI	PIPQPFRPAD	EDHRNQFGQR	DRSSSAPNVH	INTIEPVNID	DLIRDQGFRG	DGGSTTGLSA
TPPASLPGSL	TNVKALQKSP	GPQRERKSSS	SSEDRNRMKT	LGRRDSSDDW	EIPDGQITVG	QR IGSGSFGT	VYK GKWHGDV
AVKMLNVTAP	TPQQLQAFKN	EVGVLRKTRH	VNILLFMGYS	TKPQLAIVTQ	WCEGSSLYHH	LHIIETKFEM	IKLIDIARQT
AQGMDYLHAK	SIIHRDLKSN	NIFLHEDLTV	KIGDFGLATV	KSRWSGSHQF	EQLSGSILWM	APEVIRMQDK	NPYSFQSDVY
AFGIVLYELM	TGQLPYSNIN	NRDQIIFMVG	RGYLSPDLSK	VRSNCPKAMK	RLMAECLKKK	RDERPLFPQI	LASIELLARS
LPKIHRSASE	PSLNRAGFQT	EDFSLYACAS	PF TPIQAGGY	GAFPVH			

BRAF-X1

PREDICTED: serine/threonine-protein kinase B-raf isoform X1 [Homo sapiens]

MAALSGGGGG GAEPGQALFN GDMEPEAGAG AGAAASSAAD PAIPEEVWNI KQMIKLTQEH IEALLDKFGG EHNPPSIYLE AYEEYTSKLD ALQQREQQLL ESLGNGTDFS VSSSASMDTV TSSSSSSLSV LPSSLSVFQN PTDVARSNPK SPQKPIVRVF LPNKQRTVVP ARCGVTVRDS LKKALMMRGL IPECCAVYRI QDGEKKPIGW DTDISWLTGE ELHVEVLENV PLTTHNFVRK TFFTLAFCDF CRKLLFQGFR CQTCGYKFHQ RCSTEVPLMC VNYDQLDLLF VSKFFEHHPI PQEEASLAET ALTSGSSPSA PASDSIGPQI LTSPSPSKSI PIPQPFRPAD EDHRNQFGQR DRSSSAPNVH INTIEPVNID DLIRDQGFRG DGGSTTGLSA TPPASLPGSL TNVKALQKSP GPQRERKSSS SSEDRNRMKT LGRRDSSDDW EIPDGQITVG QRIGSGSFGT VYKGKWHGDV AVKMLNVTAP TPQQLQAFKN EVGVLRKTRH VNILLFMGYS TKPQLAIVTQ WCEGSSLYHH LHIIETKFEM IKLIDIARQT AQGMDYLHAK SIIHRDLKSN NIFLHEDLTV KIGDFGLATV KSRWSGSHQF EQLSGSILWM APEVIRMQDK NPYSFQSDVY AFGIVLYELM TGQLPYSNIN NRDQIIFMVG RGYLSPDLSK VRSNCPKAMK RLMAECLKKK RDERPLFPQI LASIELLARS LPKIHRSASE PSLNRAGFQT EDFSLYACAS PKTPIOAGGY GEFAAFK

Green: peptides identified with confidence >99% Red: peptides identified with confidence <95%

b BRAF-ref Serine/threonine-protein kinase B-raf

MAALSGGGGGGAEPGQALFNGDMEPEAGAGAGAAASSAADPAIPEEVWNIKQMIKLTQEHIEALLDKFGGEHNPPSIYLEAYEEYTS KLDALQQREQQLLESLGNGTDFSVSSSASMDTVTSSSSSSLSVLPSSLSVFQNPTDVARSNPKSPQKPIVRVFLPNKQRTVVPARCG VTVRDSLKKALMMRGLIPECCAVYRIQDGEKKPIGWDTDISWLTGEELHVEVLENVPLTTHNFVRKTFFTLAFCDFCRKLLFQGFRC QTCGYKFHQRCSTEVPLMCVNYDQLDLLFVSKFFEHHPIPQEEASLAETALTSGSSPSAPASDSIGPQILTSPSPSKSIPIPQPFRP ADEDHRNQFGQRDRSSSAPNVHINTIEPVNIDDLIRDQGFRGDGGSTTGLSATPPASLPGSLTNVKALQKSPGPQRERKSSSSSEDR NRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNVTAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTK PQLAIVTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKSIIHRDLKSNNIFLHEDLTVKIGDFGLATVKSRWSGSHQ FEQLSGSILWMAPEVIRMQDKNPYSFQSDVYAFGIVLYELMTGQLPYSNINNRDQTIFMVGRGYLSPDLSKVRSNCPKAMKRLMAEC LKKKRDERPLFPQILASIELLARSLPKIHRSASEPSLNRAGFQTEDFSLYACASPKTPIQAGGYGAFFVH

BRAF-X1 PREDICTED: serine/threonine-protein kinase B-raf

MAALSGGGGGGAEPGQALFNGDMEPEAGAGAGAAASSAADPAIPEEVWNIKQMIKLTQEHIEALLDKFGGEHNPPSIYLEAYEEYTS KLDALQQREQQLLESLGNGTDFSVSSSASMDTVTSSSSSSLSVLPSSLSVFQNPTDVARSNPKSPQKPIVRVFLPNKQRTVVPARCG VTVRDSLKKALMMR**GLIPECCAVYR**IQDGEKKPIGWDTDISWLTGEELHVEVLENVPLTTHNFVRKTFFTLAFCDFCRKLLFQGFRC QTCGYKFHQRCSTEVPLMCVNYDQLDLLFVSKFFEHHPIPQEEASLAETALTSGSSPSAPASDSIGPQILTSPSPSKSIPIPQPFRP ADEDHRNQFGQRDRSSSAPNVHINTIEPVNIDDLIRDQGFR**GDGGSTTGLSATPPASLPGSLTNVK**ALQKSPGPQRERKSSSSEDR NRMKTLGRRDSSDDWEIPDGQITVGQR**IGSGSFGTVYK**GKWHGDVAVKMLNVTAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTK PQLAIVTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKSIIHRDLK<mark>SNNIFLHEDLTVK</mark>IGDFGLATVKSRWSGSHQ FEQLSGSILWMAPEVIRMQDKNPYSFQSDVYAFGIVLYELMTGQLPYSNINNR**DQIIFMVGRGYLSPDLSK**VRSNCPKAMKRLMAEC LKKKRDERPLFPQILASIELLARSLPKIHRSASEPSLNRAGFQTEDFSLYACASPK**TPIQAGGYGEFAAFK**

Green: peptides identified with confidence >95% Red: peptides identified with confidence <50%

Supplementary Figure S26. BRAF peptides identified by an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific, a) and by a 5600 TripleTOF mass spectrometer (ABSciex, b) in A375 melanoma cells.

BRAF-re	f										
Serine/	threonine-protein	kinase	B-raf	OS=Homo	sapiens	GN=BRAF	PE=1	SV=4	-	[BRAF_	HUMAN]

MAALSGGGGG	GAEPGQALFN	GDMEPEAGAG	AGAAASSAAD	PAIPEEVWNI	KQMIKL TQEH	IEALLDK FGG	EHNPPSIYLE
AYEEYTSK LD	ALQQREQQLL	ESLGNGTDFS	VSSSASMDTV	TSSSSSSLSV	LPSSLSVFQN	PTDVARSNPK	SPQKPIVR VF
LPNKQRTVVP	ARCGVTVRDS	LKKALMMRGL	IPECCAVYRI	QDGEKKPIGW	DTDISWLTGE	ELHVEVLENV	PLTTHNFVRK
TFFTLAFCDF	CRK LLFQGFR	CQTCGYKFHQ	RCSTEVPLMC	VNYDQLDLLF	VSKFFEHHPI	PQEEASLAET	ALTSGSSPSA
PASDSIGPQI	LTSPSPSKSI	PIPQPFRPAD	EDHRNQFGQR	DRSSSAPNVH	INTIEPVNID	DLIRDQGFRG	DGGSTTGLSA
TPPASLPGSL	TNVKALQKSP	GPQRERKSSS	SSEDRNRMKT	LGRRDSSDDW	EIPDGQITVG	QR IGSGSFGT	VYK GKWHGDV
AVKMLNVTAP	TPQQLQAFKN	EVGVLRKTRH	VNILLFMGYS	TKPQLAIVTQ	WCEGSSLYHH	LHIIETKFEM	IK <mark>LIDIARQT</mark>
AQGMDYLHAK	SIIHRDLKSN	NIFLHEDLTV	KIGDFGLATV	KSRWSGSHQF	EQLSGSILWM	APEVIRMQDK	NPYSFQSDVY
AFGIVLYELM	TGQLPYSNIN	NRDQIIFMVG	RGYLSPDLSK	VRSNCPKAMK	R LMAECLK KK	RDERPLFPQI	LASIELLARS
LPKTHRSASE	PSLNRAGFOT	EDFSLYACAS	PETPIOAGGY	GAFPVH			

BRAF-X1

PREDICTED: serine/threonine-protein kinase B-raf isoform X1 [Homo sapiens]

		000000000000					
MAALSGGGGG	GAEPGQALFN	GDMEPEAGAG	AGAAASSAAD	PAIPEEVWNI	KÖWIKTÄRH	I EALLDK FGG	EHNPPSIYLE
AYEEYTSK LD	ALQQREQQLL	ESLGNGTDFS	VSSSASMDTV	TSSSSSSLSV	LPSSLSVFQN	PTDVARSNPK	SPQKPIVR VF
LPNKQR TVVP	ARCGVTVRDS	lkkalmmr <mark>gl</mark>	IPECCAVYRI	QDGEKKPIGW	DTDISWLTGE	ELHVEVLENV	PLTTHNFVRK
TFFTLAFCDF	CRK LLFQGFR	CQTCGYKFHQ	RCSTEVPLMC	VNYDQLDLLF	VSKFFEHHPI	PQEEASLAET	ALTSGSSPSA
PASDSIGPQI	LTSPSPSKSI	PIPQPFRPAD	EDHRNQFGQR	DRSSSAPNVH	INTIEPVNID	DLIRDQGFRG	DGGSTTGLSA
TPPASLPGSL	TNVKALQKSP	GPQRERKSSS	SSEDRNRMKT	LGRRDSSDDW	EIPDGQITVG	QR IGSGSFGT	VYKGKWHGDV
AVKMLNVTAP	TPQQLQAFKN	EVGVLRKTRH	VNILLFMGYS	TKPQLAIVTQ	WCEGSSLYHH	LHIIETKFEM	IK <mark>LIDIAR<mark>QT</mark></mark>
AQGMDYLHAK	SIIHRDLKSN	NIFLHEDLTV	KIGDFGLATV	KSRWSGSHQF	EQLSGSILWM	APEVIRMQDK	NPYSFQSDVY
AFGIVLYELM	TGQLPYSNIN	NRDQIIFMVG	RGYLSPDLSK	VRSNCPKAMK	RLMAECLKKK	RDERPLFPQI	LASIELLARS
LPKIHR SASE	PSLNRAGFQT	EDFSLYACAS	PK TPIOAGGY	GEFAAFK			

Green: peptides identified with confidence >99% Yellow: peptides identified with 95%<confidence<99% Red: peptides identified with confidence <95%

Supplementary Figure S27. BRAF peptides identified by LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific) in WM793B melanoma cells.

Supplementary Figure S28. Translation efficiency of reference, X1 and X2 BRAF mRNAs in A375 cells.

The reads that span E18.2-E18b (*BRAF*-ref, grey), E18.2-E19 (*BRAF*-X1, blue), E17-E19 (*BRAF*-X2, green) were retrieved using the RNA-seq data reported in GSE64741 on n=9 whole RNA samples (GSM1579147 to GSM1579155, CT) and in n=20 RNA samples isolated using the TRAP (translating ribosome affinity purification) protocol (GSM1579156 to GSM1579163 and GSM1579176 to GSM1579187, PS). In order to account for the differences in library size among samples, they were then normalized against the reads that span E17-E18.2. Finally, normalized reads were used to compare CT and PS samples.*p<0.05, **p<0.01.

Supplementary Figure S29. BRAF-X2 protein displays a faster decay due to increased proteosomalmediated degradation.

Upon the transient transfection of pEGFP-empty, pEGFP-CR3-ref, pEGFP-CR3-X1 and pEGFP-CR3-X2 plasmids, A375 cells were treated with 100ug/ml cicloheximide (CHX) and 20uM MG132 for 8h. The block of CR3-X2 degradation causes by MG132 remains evident also in the absence of new protein synthesis. The graph represents the mean±SEM of 3 independent experiments.