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Materials and Methods 

Preprocessing for transcriptomic and genomic data of TCGA 

We used publicly available cancer genome and transcriptome data from the TCGA 

projects. Using ‘TCGABiolinks’ R package [1], we downloaded the level three RNA 

sequence data of 32 solid cancers from TCGA data portal (https://portal.gdc.cancer.gov/) on 

Dec 12th, 2017, obtained with Illumina HiSeq RNASeqV2 (Illumina, San Diego, CA, USA). 

For each type of TCGA projects, we normalized mRNA transcripts using 

‘TCGAAnalyze_Normalization’ function and filtered low expression genes with 

‘TCGAanalyze_Filtering’ function. We merged transcriptome data of each TCGA projects 

into one large-scale expression matrix for pan-cancer analysis. Clinical information, 

including vital status, follow-up time, and time of death was also collected in the same 

manner. The information for microsatellite instability (MSI) or hypermutated status of both 

STAD and COAD were downloaded from the website of The cBioPortal for Cancer 

Genomics (http://www.cbioportal.org) on Dec 23th, 2017. We downloaded pre-compiled, 

curated somatic mutations data of 32 solid cancer types from TCGA projects, provided by 

‘TCGAmutations’, as a R data package (https://github.com/PoisonAlien/TCGAmutations). 

The pre-compiled data were derived from the latest analysis data (January 28th, 2016) which 

was downloaded via Broad Institute GDAC Firehose pipeline. Mutation data were analyzed 

and summarized using maftools package [2]. We excluded three cancer subtypes (malignant 

mesothelioma, uterine corpus endometrial carcinoma, and skin cutaneous melanoma) for the 

analysis due to insufficient mutation data in the pre-compiled data; conclusively, genomic and 

transcriptomic data from total 29 cancer subtypes were used for the analysis in the present 

study. 

 

http://www.cbioportal.org/


 

3 

 

Calculating enrichment scores of metabolic pathways 

To analyze cancer type-specific metabolic landscape, we used 26 metabolic pathways 

defined by Reactome [3] across 29 cancer types. Single sample gene set enrichment analysis 

was then applied against the curated gene sets of the Reactome metabolic pathways to define 

metabolic profiles of each cancer samples. We implemented single sample gene set 

enrichment analysis [4] using the curated gene sets from canonical pathways (MSigDB C2, 

Broad Institute; version 3.0) with GSVA R/Bioconductor package [5, 6]. To identify the 

functional enrichment scores of metabolic pathways of each sample, we extracted the 

enrichment scores of 26 Reactome pathways which were related to metabolism 

(Supplementary table 1) [3]. The enrichment scores of Reactome metabolic pathways were 

normalized by z-score across all samples. In total, we analyzed 7648 transcriptomic and 

genomic data (Number of samples and abbreviation for each cancer type is summarized in 

Supplementary Table 2). 

 

Two-dimensional metabolic landscape mapping 

To visualize differences in metabolic landscape, a dimension reduction method, t-

Distributed Stochastic Neighbor Embedding (t-SNE), was used [7]. Briefly, using t-SNE, 

similar samples are modeled by nearby points to maintain local similarity. The similarity 

between a sample and other samples is defined by Gaussian with a number of neighbors, 

perplexity. We set the perplexity to 30.  

 

Differentially mutated genes according to each metabolic pathway 

For each metabolic signatures, the samples of each tumor type were divided into two 

groups according to the median value of the enrichment score. The differentially mutated 
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genes between low and high enrichment scores group were evaluated by a fisher test on all 

genes. The genes with p-value corrected by false discovery rate under 0.05 were regarded as 

significantly differentially mutated genes.  

 

Cancer driver mutation 

We compared significantly differentially mutated genes for metabolic signatures and 

cancer drivers. Cancer drivers were identified by a pre-computed drivers using various 

algorithms deposited by DriverDBv2 (http://driverdb.tms.cmu.edu.tw/driverdbv2/) [8]. This 

database provides cancer drivers identified by multiple algorithms and we can choose the 

number of algorithms to find duplicate driver genes. We chose the maximal number of 

computational algorithms for each cancer type to define cancer drivers.  

 

Statistical analysis 

The correlation analysis between the TMB and enrichment scores of metabolic pathways 

was performed by the Spearman’s correlation test. The prognostic property of each 

enrichment score of metabolic pathways on overall survival was evaluated by using the Cox 

proportional regression analysis in each cancer subtypes as well as pan-cancer data. All 

statistical analyses were done within the R program (v3.4.3). 

  

http://driverdb.tms.cmu.edu.tw/driverdbv2/
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Supplementary Figures 

 

Supplementary Figure 1. Metabolic landscape of 29 types of cancer. (A) The heatmap 

depicting the median enrichment scores of 26 Reactome metabolic pathways for each cancer 

type. Red, yellow color represents high, low enrichment scores, respectively. (B) All samples 

were mapped to the two-dimensional projection using t-Distributed Stochastic Neighborhood 

Embedding based on the enrichment scores of metabolic pathways. Each cancer type is 

depicted in different color.  
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Supplementary Figure 2. Metabolic landscape of testicular germ cell tumor (TCGT) and 

cholangiocardinoma (CHOL). (A, B) t-Distributed Stochastic Neighbor Embedding 

analysis of TCGT (A) and CHOL (B) data sets relative to metabolic signatures. (C, D) The 

heatmap depicting metabolic signatures of TCGT (C) and CHOL (D). The histologic types of 

testicular germ cell tumor are shown for each sample (above the heatmap). 
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Supplementary Figure 3. Distribution of total mutation burden carbohydrate, and 

pyrimidine metabolism in each cancer type. Total mutation burden (A), enrichment scores 

of carbohydrate (B) and pyrimidine metabolism (C) across 29 cancers.  
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Supplementary Figure 4. Association between total mutation burden and carbohydrate, 

pyrimidine metabolism. The points of scatter plot representing the median value of total 

mutation burden of each cancer type (y-axis) and carbohydrate (A), and pyrimidine (B) 

metabolism (x-axis). The correlation coefficient (r value) for each plot was calculated from 

pan-cancer analysis. 
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Supplementary Figure 5. Correlation of the enrichment scores of metabolic pathways 

and tumor mutation burden across 29 cancers. The Spearman’s rank correlation matrix 

representing the relationship between enrichment scores of 26 metabolic pathways from 

Reactome and tumor mutation burden across 29 cancers. The colors of the scale bar denote 

the nature of the correlation with positive correlation in blue scale and negative correlation in 

red scale. The ellipses have their eccentricity parametrically scaled to the correlation 

coefficient value. 
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Supplementary Figure 6. Metabolism-related genes for each cancer type. All 

metabolism-related genes (y-axis) are presented with metabolic signatures (x-axis) for each 

cancer type. Red squares represent genes significantly more mutations in tumors with high 

metabolic signatures. Blue squares represent genes significantly fewer mutations in tumor 

with high metabolic signature. 
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Supplementary Figure 7. Difference in metabolic signatures according to the presence of 

microsatellite instability. The heatmap depicting metabolic signatures of stomach 

adenocarcinoma (STAD) (A) and colon adenocarcinoma (COAD) (B). The presence of 

microsatellite instability or hypermutation are shown above the heatmap (MSS = 
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microsatellite stable; MSI = microsatellite instable; MSI-H = High microsatellite instability; 

MSI-L = Low microsatellite instability).   
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Supplementary Tables 

Supplementary Table 1. List of metabolic pathways from Reactome used in the 

study  

Metabolic pathways from Reactome Abbreviation 

Metabolism of amino acids AA metabolism 

Amino acid synthesis and interconversion AA synthesis 

Branched chain amino acid catabolism BC AA Catabolism 

Biological oxidations Biological Oxidation 

Metabolism of carbohydrates Carbohydrate Metabolism 

Cholesterol biosynthesis Cholesterol synthesis 

Mitochondrial fatty acid beta oxidation Fatty acid oxidation 

Glyconeogenesis Gluconeogenesis 

Glucose metabolism Glucose metabolism 

Glycogen breakdown glycogenolysis Glycogenolysis 

Glycolysis Glycolysis 

Hormone synthesis Hormone synthesis 

Lipoprotein metabolism Lipoprotein metabolism 

Metabolism of mRNA mRNA metabolism 

Metabolism of nitric oxide NO metabolism 

Peroxisomal lipid metabolism Peroxisomal lipid metabolism 

Metabolism of proteins Protein metabolism 

Purine metabolism Purine metabolism 

Pyrimidine metabolism Pyrimidine metabolism 

Pyruvate metabolism Pyruvate metabolism 

Purine ribonucleotide monophosphate biosynthesis Ribonucleotide synthesis 

Metabolism of RNA RNA metabolism 

Sphingolipid metabolism Sphingolipid metabolism 

Steroid metabolism Steroid metabolism 

Steroid hormone biosynthesis Steroid synthesis 

Citric acid cycle TCA cycle 
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Supplementary Table 2. Number of samples for each cancer subtype included for the 

analysis 

Disease type Abbreviation Number of samples 

Adenocortical carcinoma ACC 54 

Bladder Urothelial Carcinoma BLCA 390 

Breast invasive carcinoma BRCA 971 

Cervical Squamous Cell Carcinoma 

and Endocervical Adenocarcinoma 
CESC 193 

Cholangiocarcinoma CHOL 35 

Colon Adenocarcinoma COAD 208 

Diffuse large B-cell lymphoma DLBC 48 

Esophageal Carcinoma ESCA 184 

Glioblastoma multiforme GBM 142 

Head and Neck Squamous Cell Carcinoma HNSC 503 

Kidney Chromophobe KICH 66 

Kidney Renal Clear Cell Carcinoma KIRC 433 

Kidney Renal Papillary Cell Carcinoma KIRP 281 

Brain lower grade glioma LGG 516 

Liver Hepatocellular Carcinoma LIHC 367 

Lung Adenocarcinoma LUAD 478 

Lung squamous cell carcinoma LUSC 176 

Ovarian serous cystadenocarcinoma OV 248 

Pancreatic Adenocarcinoma PAAD 119 

Pheochromocytoma and Paraganglioma PCPG 179 

Prostate Adenocarcinoma PRAD 497 

Rectum adenocarcinoma READ 53 

Sarcoma SARC 245 

Stomach Adenocarcinoma STAD 370 

Testicular germ cell tumors TGCT 147 

Thyroid carcinoma THCA 493 

Thymoma THYM 115 

Uterine Carcinosarcoma UCS 57 

Uveal melanoma UVM 80 
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