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Materials and Methods

Preprocessing for transcriptomic and genomic data of TCGA

We used publicly available cancer genome and transcriptome data from the TCGA
projects. Using ‘TCGABiolinks’ R package [1], we downloaded the level three RNA
sequence data of 32 solid cancers from TCGA data portal (https://portal.gdc.cancer.gov/) on
Dec 12th, 2017, obtained with Illumina HiSeq RNASeqV2 (lllumina, San Diego, CA, USA).
For each type of TCGA projects, we normalized mRNA transcripts using
‘TCGAAnalyze Normalization’ function and filtered low expression genes with
‘TCGAanalyze Filtering’ function. We merged transcriptome data of each TCGA projects
into one large-scale expression matrix for pan-cancer analysis. Clinical information,
including vital status, follow-up time, and time of death was also collected in the same
manner. The information for microsatellite instability (MSI) or hypermutated status of both
STAD and COAD were downloaded from the website of The cBioPortal for Cancer

Genomics (http://www.cbioportal.org) on Dec 23th, 2017. We downloaded pre-compiled,

curated somatic mutations data of 32 solid cancer types from TCGA projects, provided by
‘TCGAmutations’, as a R data package (https://github.com/PoisonAlien/TCGAmutations).
The pre-compiled data were derived from the latest analysis data (January 28", 2016) which
was downloaded via Broad Institute GDAC Firehose pipeline. Mutation data were analyzed
and summarized using maftools package [2]. We excluded three cancer subtypes (malignant
mesothelioma, uterine corpus endometrial carcinoma, and skin cutaneous melanoma) for the
analysis due to insufficient mutation data in the pre-compiled data; conclusively, genomic and
transcriptomic data from total 29 cancer subtypes were used for the analysis in the present

study.


http://www.cbioportal.org/

Calculating enrichment scores of metabolic pathways

To analyze cancer type-specific metabolic landscape, we used 26 metabolic pathways
defined by Reactome [3] across 29 cancer types. Single sample gene set enrichment analysis
was then applied against the curated gene sets of the Reactome metabolic pathways to define
metabolic profiles of each cancer samples. We implemented single sample gene set
enrichment analysis [4] using the curated gene sets from canonical pathways (MSigDB C2,
Broad Institute; version 3.0) with GSVA R/Bioconductor package [5, 6]. To identify the
functional enrichment scores of metabolic pathways of each sample, we extracted the
enrichment scores of 26 Reactome pathways which were related to metabolism
(Supplementary table 1) [3]. The enrichment scores of Reactome metabolic pathways were
normalized by z-score across all samples. In total, we analyzed 7648 transcriptomic and
genomic data (Number of samples and abbreviation for each cancer type is summarized in

Supplementary Table 2).

Two-dimensional metabolic landscape mapping

To visualize differences in metabolic landscape, a dimension reduction method, t-
Distributed Stochastic Neighbor Embedding (t-SNE), was used [7]. Briefly, using t-SNE,
similar samples are modeled by nearby points to maintain local similarity. The similarity
between a sample and other samples is defined by Gaussian with a number of neighbors,

perplexity. We set the perplexity to 30.

Differentially mutated genes according to each metabolic pathway
For each metabolic signatures, the samples of each tumor type were divided into two

groups according to the median value of the enrichment score. The differentially mutated
3



genes between low and high enrichment scores group were evaluated by a fisher test on all
genes. The genes with p-value corrected by false discovery rate under 0.05 were regarded as

significantly differentially mutated genes.

Cancer driver mutation
We compared significantly differentially mutated genes for metabolic signatures and
cancer drivers. Cancer drivers were identified by a pre-computed drivers using various

algorithms deposited by DriverDBv2 (http://driverdb.tms.cmu.edu.tw/driverdbv2/) [8]. This

database provides cancer drivers identified by multiple algorithms and we can choose the
number of algorithms to find duplicate driver genes. We chose the maximal number of

computational algorithms for each cancer type to define cancer drivers.

Statistical analysis

The correlation analysis between the TMB and enrichment scores of metabolic pathways
was performed by the Spearman’s correlation test. The prognostic property of each
enrichment score of metabolic pathways on overall survival was evaluated by using the Cox
proportional regression analysis in each cancer subtypes as well as pan-cancer data. All

statistical analyses were done within the R program (v3.4.3).


http://driverdb.tms.cmu.edu.tw/driverdbv2/
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Supplementary Figure 1. Metabolic landscape of 29 types of cancer. (A) The heatmap
depicting the median enrichment scores of 26 Reactome metabolic pathways for each cancer
type. Red, yellow color represents high, low enrichment scores, respectively. (B) All samples
were mapped to the two-dimensional projection using t-Distributed Stochastic Neighborhood
Embedding based on the enrichment scores of metabolic pathways. Each cancer type is

depicted in different color.
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Supplementary Figure 2. Metabolic landscape of testicular germ cell tumor (TCGT) and
cholangiocardinoma (CHOL). (A, B) t-Distributed Stochastic Neighbor Embedding
analysis of TCGT (A) and CHOL (B) data sets relative to metabolic signatures. (C, D) The
heatmap depicting metabolic signatures of TCGT (C) and CHOL (D). The histologic types of

testicular germ cell tumor are shown for each sample (above the heatmap).
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pyrimidine metabolism in each cancer type. Total mutation burden (A), enrichment scores

of carbohydrate (B) and pyrimidine metabolism (C) across 29 cancers.
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Supplementary Figure 4. Association between total mutation burden and carbohydrate,
pyrimidine metabolism. The points of scatter plot representing the median value of total
mutation burden of each cancer type (y-axis) and carbohydrate (A), and pyrimidine (B)
metabolism (x-axis). The correlation coefficient (r value) for each plot was calculated from

pan-cancer analysis.
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Supplementary Figure 5. Correlation of the enrichment scores of metabolic pathways
and tumor mutation burden across 29 cancers. The Spearman’s rank correlation matrix
representing the relationship between enrichment scores of 26 metabolic pathways from
Reactome and tumor mutation burden across 29 cancers. The colors of the scale bar denote
the nature of the correlation with positive correlation in blue scale and negative correlation in
red scale. The ellipses have their eccentricity parametrically scaled to the correlation

coefficient value.
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Supplementary Figure 6. Metabolism-related genes for each cancer type. All
metabolism-related genes (y-axis) are presented with metabolic signatures (x-axis) for each
cancer type. Red squares represent genes significantly more mutations in tumors with high
metabolic signatures. Blue squares represent genes significantly fewer mutations in tumor

with high metabolic signature.
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Supplementary Figure 7. Difference in metabolic signatures according to the presence of
microsatellite instability. The heatmap depicting metabolic signatures of stomach
adenocarcinoma (STAD) (A) and colon adenocarcinoma (COAD) (B). The presence of

microsatellite instability or hypermutation are shown above the heatmap (MSS =
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microsatellite stable; MSI = microsatellite instable; MSI-H = High microsatellite instability;

MSI-L = Low microsatellite instability).
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Supplementary Tables

Supplementary Table 1. List of metabolic pathways from Reactome used in the

study

Metabolic pathways from Reactome

Abbreviation

Metabolism of amino acids

Amino acid synthesis and interconversion
Branched chain amino acid catabolism
Biological oxidations

Metabolism of carbohydrates
Cholesterol biosynthesis
Mitochondrial fatty acid beta oxidation
Glyconeogenesis

Glucose metabolism

Glycogen breakdown glycogenolysis
Glycolysis

Hormone synthesis

Lipoprotein metabolism

Metabolism of MRNA

Metabolism of nitric oxide
Peroxisomal lipid metabolism
Metabolism of proteins

Purine metabolism

Pyrimidine metabolism

Pyruvate metabolism

Purine ribonucleotide monophosphate biosynthesis
Metabolism of RNA

Sphingolipid metabolism

Steroid metabolism

Steroid hormone biosynthesis

Citric acid cycle

AA metabolism

AA synthesis

BC AA Catabolism
Biological Oxidation
Carbohydrate Metabolism
Cholesterol synthesis
Fatty acid oxidation
Gluconeogenesis
Glucose metabolism
Glycogenolysis
Glycolysis

Hormone synthesis
Lipoprotein metabolism
MRNA metabolism

NO metabolism

Peroxisomal lipid metabolism

Protein metabolism
Purine metabolism
Pyrimidine metabolism
Pyruvate metabolism
Ribonucleotide synthesis
RNA metabolism
Sphingolipid metabolism
Steroid metabolism
Steroid synthesis

TCA cycle

15



Supplementary Table 2. Number of samples for each cancer subtype included for the

analysis
Disease type Abbreviation  Number of samples
Adenocortical carcinoma ACC 54
Bladder Urothelial Carcinoma BLCA 390
Breast invasive carcinoma BRCA 971
e Endocervical Adenocarcinoma cEsC 163
Cholangiocarcinoma CHOL 35
Colon Adenocarcinoma COAD 208
Diffuse large B-cell lymphoma DLBC 48
Esophageal Carcinoma ESCA 184
Glioblastoma multiforme GBM 142
Head and Neck Squamous Cell Carcinoma HNSC 503
Kidney Chromophobe KICH 66
Kidney Renal Clear Cell Carcinoma KIRC 433
Kidney Renal Papillary Cell Carcinoma KIRP 281
Brain lower grade glioma LGG 516
Liver Hepatocellular Carcinoma LIHC 367
Lung Adenocarcinoma LUAD 478
Lung squamous cell carcinoma LUSC 176
Ovarian serous cystadenocarcinoma ov 248
Pancreatic Adenocarcinoma PAAD 119
Pheochromocytoma and Paraganglioma PCPG 179
Prostate Adenocarcinoma PRAD 497
Rectum adenocarcinoma READ 53
Sarcoma SARC 245
Stomach Adenocarcinoma STAD 370
Testicular germ cell tumors TGCT 147
Thyroid carcinoma THCA 493
Thymoma THYM 115
Uterine Carcinosarcoma UCS 57
Uveal melanoma UVM 80
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