Supplementary information

# AP4 suppresses DNA damage, chromosomal instability and senescence via inducing *MDC1/Mediator of DNA damage Checkpoint 1* and repressing *MIR22HG/*miR-22-3p

Chou et al.

List of contents:

Additional file 1: Fig. S1: AP4 inactivation induces senescence and apoptosis in CRC cells.

Additional file 2: Fig. S2: AP4 inactivation induces DNA damage in CRC cells.

Additional file 3: Fig. S3: AP4 directly represses MIR22HG.

Additional file 4: Fig. S4: MDC1 is directly and indirectly regulated by AP4.

Additional file 5: Fig. S5: MDC1 mediates effects of *AP4* on DNA damage and senescence.

Additional file 6: Fig. S6: MDC1 mediates effects of *AP4* on chromosomal instability and HR.

Additional file 7: Fig. S7: AP4 confers resistance towards Etoposide via MDC1.

Additional file 8: Fig. S8: AP4 confers resistance towards 5-FU via MDC1.

**Additional file 9: Fig. S9:** Kaplan–Meier analysis of the association between relapse free survival and the mRNA expression.

Additional file 10: Fig. S10: Original blots.

Additional file 11: Table S1: Sequence information for miR-22-3p mimic and control mimic.

Additional file 12: Table S2: Sequence information for guide RNAs used for *AP4* deletion.

Additional file 13: Table S3: List of Antibodies.

Additional file 14: Table S4: Oligonucleotides used for qPCR.

Additional file 15: Table S5: Oligonucleotides used for qChIP.

Additional file 16: Table S6: Oligonucleotides used for reporter plasmids.



Fig. S1: *AP4* inactivation induces senescence and apoptosis in CRC cells. A AP4 detection by Western blot analysis.  $\beta$ -actin served as a loading control. **B** Phase contrast images of the indicated cell lines. Scale bars: 50 µm. **C** Colony formation assays of *AP4* WT and KO single cell clones obtained from DLD-1 and SW480 cells. Three independent clones were analyzed. **D** Detection of senescent cells using pH6  $\beta$ -gal staining after 48 hours of transfection. Quantification of a total of 120 cells in 3 fields. Scale bars: 100 µm. **E** Quantification of apoptotic cells by Annexin V / PI detection 48 hours after transfection in the indicated cells (left panel). The flow charts of DLD-1 and SW480 cells with indicated transfections are presented in the right panel.

**F** MTT assay results of indicated cell lines 72 hours after seeding into a 96-well plate. **G** Proliferation was determined by impedance measurement. In panels **D-G** the mean <u>+</u> SD (n = 3) is provided. \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001, \*\*\*\*: p < 0.0001.



Figure S2

Fig. S2: AP4 inactivation induces DNA damage in CRC cells. A Detection of  $\gamma$ H2AX foci. Quantification of a total of 100 cells in 5 fields. Scale bars: 20 µm. B Western blot analysis of  $\gamma$ H2AX 48 hours after transfection in the indicated cells. C Comet assay and quantification of DNA tail moment of a total of 150 cells in 10 fields. Scale bars: 20 µm. D Western blot analysis 48 hours after transfection of c-*MYC*–specific siRNA. E FACS analysis of DLD-1/SW480 *AP4* WT/KO pRTR-c-*MYC*-VSV pools. Pools with more than 80% GFP-positive cells were selected. F  $\gamma$ H2AX detection after c-*MYC* induction by DOX for indicated durations. Quantification of a total of 100 cells in 5 fields. Scale bars: 20 µm. In panels A the mean  $\pm$  SD (n = 5), C the mean  $\pm$  SD (n = 10) and F the mean  $\pm$  SD (n = 5) are provided. \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001.



**Fig. S3: AP4 directly represses** *MIR22HG***. A** qPCR analysis of *MIR22HG* and *p21* in the indicated clones of SW480 cells. **B** qPCR analysis of miR-22-3p expression (left panel) and nascent *MIR22HG* mRNA (right panel) in the indicated cells. **C** Western blot analysis of MYC-VSV and AP4 expression after c-*MYC* induction by DOX for indicated durations. **D** qPCR analysis of *MIR22HG* (left panel) and miR-22-3p (right panel) after c-MYC induction by DOX for indicated durations by DOX for indicated durations. **E** qPCR analysis of nascent *MIR22HG* mRNA 48 hours after c-*MYC* induction by DOX. **F** qPCR analysis of *SNAI1* (left panel) and *p21* (right panel) after c-*MYC* induction by DOX for indicated durations. **G** qPCR analysis of *MIR22HG* 48 hours after transfection. **H** β-gal detection at pH 6 48 hours after transfection. Quantification of a total of 120 cells in 3 fields. Scale bars: 50 μm. In panels **A-B**, **D-H** the mean <u>+</u> SD (n = 3) is provided with \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001.





Fig. S4: *MDC1* is directly and indirectly regulated by AP4. A qPCR analysis of *MDC1* expression. **B** Western blot analysis. **C** qPCR analysis 48 hours after transfection. **D** Western blot analysis 48 hours after transfection. **E** MDC1 foci detection in untreated cells. Quantification of a total of 120 cells in 3 fields. Scale bars: 20 µm. **F** qPCR analysis of nascent *MDC1* mRNA in the indicated cell lines. **G** qPCR analysis of *MDC1* 48 hours after transfections. **H** Western blot analysis 48 hours after transfection. **I** qPCR analysis of nascent *MDC1* mRNA 48 hours after c-MYC induction by DOX. **J** Western blot analysis after induction of c-MYC by DOX for the indicated periods. In panels **A**, **C**, **E**-**G** and **I** the mean <u>+</u> SD (n = 3) is provided with \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001.



Fig. S5: MDC1 mediates effects of AP4 on DNA damage and senescence. A Detection of MDC1 and  $\gamma$ H2AX foci by immunocytochemistry 48 hours after silencing *MDC1*. Scale bars: 20 µm. Quantification of a total of 120 cells in 3 fields. **B** MDC1 and  $\gamma$ H2AX foci were detected by immunocytochemistry 48 hours after ectopic expression of MDC1. Scale bars: 20 µm. Quantification of a total of 120 cells in 3 fields. **C**  $\beta$ -gal staining 48 hours after silencing or ectopic expression of MDC1, respectively.

Quantification of a total of 120 cells in 3 fields. Scale bars: 50 µm. **D** MTT assay results 48 hours after silencing *MDC1*. **E** MTT assay results 48 hours after ectopic expressing MDC1. Detection of **F**  $\gamma$ H2AX foci by immunocytochemistry, **G**  $\beta$ -gal staining and **H** comet assay in DLD-1 *AP4* WT1 cells 48 hours after transfection. Quantification of DNA tail moment of a total of 150 cells in 10 fields. In panel **A-E**, the mean <u>+</u> SD (n = 3), in panel **F-G**, the mean <u>+</u> SD (n = 5) and in panel **H**, the mean <u>+</u> SD (n = 10) are provided with \*\*: p < 0.01, \*\*\*: p < 0.001, \*\*\*\*: p < 0.0001.



Figure S6

Fig. S6: MDC1 mediates effects of AP4 on chromosomal instability and HR. A Examples and quantification of micronuclei after DAPI staining. Quantification of a total of 50 cells in 3 fields. Scale bars: 20  $\mu$ m. B Kinetic evaluation of micronucleus formation 48 hours after transfection with the indicated oligonucleotides or vectors. C The indicated cells were co-transfected with pDR-GFP, pCBAScel plasmids. A pcDNA-mCherry plasmid was also co-transfected as a control of transfection efficiency. The percentage of cells expressing GFP among mCherry-positive cells was measured by flow cytometry 72 hours after transfection. D-G The percentage of the indicated cells expressing GFP was measured by flow cytometry after 72 hours of transfections with the indicated plasmids or oligonucleotides. In panels A-G, the mean <u>+</u> SD (n = 3) is provided with \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001.



Figure S7

Fig. **S7**: AP4 confers resistance towards Etoposide via MDC1. Α Immunocytochemistry detection of MDC1 and yH2AX foci 12 hours after addition of 20 µM Etoposide. Quantification of a total of 120 cells in 3 fields. Scale bars: 50 µm. B MTT assay results 12 hours after 20 µM Etoposide treatment. MTT assay results of cells transfected with C the indicated oligonucleotides or D expression plasmids for 48 hours and then subjected to treatment with Etoposide for another 12 hours. In panels **A-D** the mean + SD (n = 3) is provided with \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001.



Figure S8

Fig. S8: AP4 confers resistance towards 5-FU via MDC1. A The indicated cells were treated with increasing concentrations of 5-FU for 48 hours. Then the  $IC_{50}$  was determined by an MTT assay. B-E The indicated cells were transfected with indicated oligonucleotides for 48 hours and subsequently treated with increasing concentrations

of 5-FU for another 48 hours. After treatments, the IC<sub>50</sub> was determined by an MTT assay. **F-I** Colony formation assay of the indicated cells transfected with the indicated oligonucleotides or plasmids for 48 hours and then subjected to treatment with 10  $\mu$ M 5-FU for another 48 hours. For the last 48 hours fresh DOX was added. After treatments, cells were cultured for 3 weeks. In panels **A-I**, the mean <u>+</u> SD (n = 3) is provided with \*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001.



Fig. S9: Kaplan–Meier analysis of the association between relapse free survival and c-MYC, AP4, MIR22HG and MDC1 mRNA expression. Analysis of A c-MYC, B AP4, C MIR22HG and D MDC1 in patients that received chemotherapy (n = 87) represented in the GSE14333 dataset. The significance was calculated with the log-rank test. Below the graphs, the number of patients at risk with high or low expression of the indicated mRNA at the respective time point is provided. HR, hazard ratio.

#### Fig. S10: Original blots.











#### uncropped gel of Fig 4F



#### uncropped gel of Fig 4H and S4J





#### uncropped gel of Fig 9F



Uncropped gel for Figure S3C



## Table S1: Sequence information for miR-22-3p mimic and control mimic.

|                     | Sequence information (5'-3') |
|---------------------|------------------------------|
| hsa-miR-22-3p mimic | AAGCUGCCAGUUGAAGAACUGU       |
| Control mimic       | UCACCGGGUGUAAAUCAGCUUG       |

### Table S2: Sequence information for guide RNAs used for *AP4* deletion.

|                     | Sequence information (5'-3') |  |
|---------------------|------------------------------|--|
| Guide RNA 1 Forward | CACCGACCAGGAGCGGCGGATTCGG    |  |
| Guide RNA 1 Reverse | AAACCCGAATCCGCCGCTCCTGGTC    |  |
| Guide RNA 2 Forward | CACCGGCGTCTCCGCTCGTTGCTGT    |  |
| Guide RNA 2 Reverse | AAACACAGCAACGAGCGGAGACGCC    |  |
| Guide RNA 3 Forward | CACCGCGCATGCAGAGCATCAACGC    |  |
| Guide RNA 3 Reverse | AAACGCGTTGATGCTCTGCATGCGC    |  |

#### Table S3: List of Antibodies.

| Epitope                     | Species                 | Catalog No.                           | Company                                         | Use                | Dilution                   | Source                           |
|-----------------------------|-------------------------|---------------------------------------|-------------------------------------------------|--------------------|----------------------------|----------------------------------|
| Primary<br>antibodies       |                         |                                       |                                                 |                    |                            |                                  |
| α-tubulin<br>β-actin<br>VSV | Human<br>Human<br>Human | # T-9026<br># A2066<br># V4888        | Sigma-Aldrich<br>Sigma-Aldrich<br>Sigma-Aldrich | WB<br>WB<br>WB     | 1:1000<br>1:1000<br>1:7500 | mouse<br>rabbit<br>rabbit        |
| TFAP4                       | Human                   | # MCA4993Z                            | AbD Serotec                                     | WB;<br>ChIP        | 1:1000;<br>3 ua            | mouse                            |
| MDC-1<br>Mdc-1<br>γ-H2AX    | Human<br>Mouse<br>Human | # NB100-397<br># ab217528<br># JBW301 | NOVUS<br>Abcam<br>Sigma-Aldrich                 | WB/IF<br>IHC<br>IF | 1:1000<br>1:400<br>1:1000  | rabbit<br>rabbit<br>mouse        |
| γ-H2ax                      | Mouse                   | # 9718                                | Cell Signaling<br>Technology                    | IHC                | 1:500                      | rabbit                           |
| p16 (M-156)<br>Ki67         | Mouse<br>Mouse          | # sc-1207<br># E0468                  | Santa Cruz<br>Dako                              | IHC<br>IHC         | 1:100<br>1:500             | rabbit<br>rat<br>Alexa<br>Fluor® |
| F-actin                     | N.A.                    | # A12379                              | Thermo Fisher                                   | IF                 | 1:50                       | 488<br>conjuga<br>ted            |
| Secondary<br>antibodies     |                         |                                       |                                                 |                    |                            |                                  |
| Anti-mouse<br>HRP           | N.A.                    | # W4021                               | Promega                                         | WB                 | 1:10,000                   | goat                             |
| Anti-rabbit<br>HRP          | N.A.                    | # A0545                               | Sigma-Aldrich                                   | WB                 | 1:10,000                   | goat                             |
| Alexa Fluor<br>Plus 555     | N.A.                    | # A32727                              | Thermo Fisher                                   | IF                 | 1:1000                     | goat                             |
| Alexa Fluor<br>Plus 488     | N.A.                    | # A32731                              | Thermo Fisher                                   | IF                 | 1:1000                     | goat                             |

# Table S4: Oligonucleotides used for qPCR.

| mRNA            | Forward (5'-3')           | Reverse (5'-3')          |
|-----------------|---------------------------|--------------------------|
| GAPDH           | TGTTGCCATCAATGACCCCTT     | CTCCACGACGTACTCAGCG      |
| MDC1            | TGCTCTTCACAGGAGTGGTG      | GGGCACACAGGAACTTGACT     |
| AP4             | GCAGGCAATCCAGCACAT        | GGAGGCGGTGTCAGAGGT       |
| c-MYC           | CTTCTCTCCGTCCTCGGATTCT    | GAAGGTGATCCAGACTCTGACCTT |
| β-actin         | TGACATTAAGGAGAAGCTGTGCTAC | GAGTTGAAGGTAGTTTCGTGGATG |
| MIR22HG         | TTTGCAATAGGGGATTGCTT      | TTTAATGTCTGCGCGGTACTC    |
| p21             | GGCGGCAGACCAGCATGACAGATT  | GCAGGGGGCGGCCAGGGTAT     |
| SNAI1           | GCACATCCGAAGCCACAC        | GGAGAAGGTCCGAGCACAC      |
| mmu <i>-Ap4</i> | TCAAGCGCTTTATCCAGGAG      | CAATGCCCTCATCCTTGTCT     |
| mmu-Mdc1        | CCACAAGAGCCAGGACCTTC      | TGTAGCCAAGACTTCCCAAGG    |

## Table S5: Oligonucleotides used for qChIP.

| Gene                    | Forward (5'-3')                                      | Reverse (5'-3')                                 |
|-------------------------|------------------------------------------------------|-------------------------------------------------|
| <i>MIR22HG</i> (site A) | AGGGGGAGCAAATCACTGCG                                 | CCGTGCATTCGCAGCTCGTG                            |
| <i>MIR22HG</i> (site B) | TGATGAGGCTGGAGGGTG                                   | GGAGGGTAAGCAAGGAGGA                             |
| <i>MIR22HG</i> (site C) | AGGTCGGAGGTTGAGGAA                                   | GTTGAGGCAGGCTGGAAG                              |
| MDC1<br>(site A and B)  | GACAACCCACTACCGCTTGC                                 | AAAGGCGCTCTGGCCTTACC                            |
| MDC1<br>(site C)        | GAGATGACTTGTGGAATAGGAGGTAG                           | CCTTCCGGGACCTACCTCAG                            |
| SNAI1<br>16q22          | GGAGTACTTAAGGGAGTTGGCGG<br>CTACTCACTTATCCATCCAGGCTAC | GAACCACTCGCTAGGCCGT<br>ATTTCACACACTCAGACATCACAG |

# Table S6: Oligonucleotides used for reporter plasmids.

| Oligo     | Forward (5'-3')             | Reverse (5'-3')          |
|-----------|-----------------------------|--------------------------|
|           | AAACTAGTGAACTCCACTACCCTTTTC | GGCTGCAGTAAGGCACAGAGTGA  |
| MDC13-UTR | CCTC                        | ΑΤΑΤΤΤΑΤΤΤΑΤΟΑ           |
| miR-22-3p | TCATGCTCAGATGTCATAAGATCTTTA | GCAACAGTCTGGCTAAAGATCTTA |
| ΔSMS      | GCCAGACTGTTGC               | TGACATCTGAGCATGA         |
| miR-22-3p | AATTCACAGTTCTTCAACTGGCAGCTT | GTGTCAAGAAGTTGACCGTCGAA  |
| antisense | CTGCA                       | G                        |