Supplemental Appendix C: Biserial Correlations

The point-biserial correlation[1] is defined by the following equation

$$
\mathrm{r}_{\mathrm{pbs}}=\frac{\mu_{(+)}-\mu_{(-)}}{\mathrm{s}_{\mathrm{Tx}}} \sqrt{\pi_{(+)} \pi_{(-)}}
$$

where μ_{i} are the IBS-QOL Total Score mean values for those who report adequate relief or no relief at Week 12, respectively, $\mathrm{s}_{\mathrm{Tx}_{x}}$ is the standard deviation accounting for dose level, and π_{i} are the proportions of patients who reported adequate relief or no relief, respectively. This calculation was used to assess the linear relationship between IBS-QOL total score and the IBSAR. The resultant correlation estimate assumes a natural dichotomy and assesses the linear relationship, in the current case, between the IBS-AR probability of relief or FDA Clinical Responder status and means of the IBS-QOL total score at Week 12. The formula above also accounts for treatment dose by using the standard deviation of the IBS-QOL at Week 12, accounting for dose level received.

The biserial correlation[2] was also calculated and is given by the formula

$$
r_{\text {bis }}=\frac{\mu_{(+)}-\mu_{(-)}}{s_{T x} Z_{p}}
$$

with similar definitions as above and

$$
Z_{p}=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} \Phi^{-1}\left[\pi_{(-)}\right]^{2}\right\}
$$

representing the ordinate of the standard Gaussian distribution, $\pi_{(-)}$indicating the proportion of patients who answered the item denoting "No Relief" for IBS-AR, being a nonresponder for the FDA Clinical Responder definition, and $\Phi^{-1}(\cdot)$ representing the inverse of the Gaussian distribution for the threshold for positive response, i.e., below which patients report a negative response and above which they report a positive response. The biserial correlation assumes that the dichotomous variable follows an underlying Gaussian distribution. To assess statistical significance of the $r_{p b s}$ and $r_{\text {bis }}$ statistics, t-tests will be constructed via the following formula

$$
\mathrm{t}_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}} \sqrt{\frac{\mathrm{~N}}{1-\mathrm{r}_{\mathrm{i}}^{2}}}
$$

evaluated with $(\mathrm{N}-2)$ degrees of freedom and i indexing point biserial versus biserial.

References

1. Das Gupta S: Point biserial correlation and its generalization. Psychometrika. 1960;25:393-408.
2. Brogden H: A new coefficient: Application to biserial correlation and to estimation of selective efficiency. Psychometrika. 1949;14:169-182.
