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This online supplementary file describes in detail the DisMod-PDE model for
estimating prevalence of congenital heart disease (CHD) in the United States.
The model produces brings together data from the NHIS and NVSS and weakly-
informative priors in a Bayesian framework to produce estimates over time and
for a wide range of ages. This document follows the notation developed in [1],
but, for the convenience of the reader, it is intended to be a self-contained treat-
ment. In the author’s opinion, this is an excellent introduction to the DisMod
approach to age-period-cohort modeling, because the complexity of descriptive
epidemiological modeling is greatly reduced in the case of a congenital condition
like CHD, which has no remission and no incidence (besides at birth, which is
called birth prevalence in the preferred nomenclature of CHD epidemiologists).

1 The DisMod-PDE model

As described in [1], the DisMod-PDE model employs a two-compartment sys-
tems dynamics model of the progression of disease through a population, where
the stocks and flows are all dependent on both time and age. Let a denote age
and t denote time, and let S(a, t) and C(a, t) denote the fraction of a cohort sus-
ceptible and with-condition for a specific disease. Furthermore, let ι(a, t) be the
incidence hazard, ρ(a, t) be the remission hazard, χ(a, t) be the excess-mortality
hazard, and ω(a, t) be the background-mortality hazard.

In this notation, the system of differential equations for the the two com-
partment model is

dS(a+ τ, t+ τ)

dτ
= −(ι+ ω)S + ρC;

dC(a+ τ, t+ τ)

dτ
= ιS − (ρ+ ω + χ)C.

To make computation tractable, the age/time-specific stocks and flows are
parameterized by knots for user-specified cohorts and ages in a computational
grid, and values for a and t between grid points are calculated via bilinear inter-
polation. Although it is possible to make the differential equations stochastic in
this formulation, for our purposes here, we will always enforce equality of the S
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and C values with the approximation solution to the differential equations for
the linearly interpolates ι, ρ, χ, and ω values.

Descriptive epidemiological data is often noisier than one would expect from
sampling error alone, while age/time-specific disease parameters are expected to
vary smoothly. We incorporate these observations into the model by smoothing
across cohorts and ages.

Smoothing across cohorts is implemented as a penalty on second-order dif-
ferences of points in the computational grid. For example, for with-condition
stock C, for age grid point a, for cohorts ck, ck+1, ck+2, the log-prior is equal to

− 1

σ

[
log(C(a, ck+2 + a)) − log(C(a, ck+1 + a))

ck+2 − ck−1

− log(C(a, ck+1 + a)) − log(C(a, ck + a))

ck+1 − ck

]2
,

where σ is the prior on second-order smoothing of C with respect to cohort.
Smoothing across ages is implemented analogously, but only for flows such

as χ. For example, for excess-mortality hazard χ, for cohort grid point c, for
age grid points aj , aj+1, aj+2, the log-prior is equal to

− 1

σ

[
log(χ(aj+2, c+ aj+2)) − log(χ(aj+1, c+ aj+1))

aj+2 − aj+1

− log(χ(aj+1, c+ aj+1)) − log(χ(aj , c+ aj))

aj+1 − aj

]2
,

where σ is the prior on second-order smoothing of χ with respect to age.
Smoothing across age and cohort is also implemented with an analogous ap-

proximation of the cross derivative. For an example again with excess-mortality
hazard χ, for cohort grid points ck, ck+1 and age grid points aj , aj+1, the log-
prior is equal to

− 1

σ

[
log(χ(aj+1, ck+1 + aj+1)) − log(χ(aj+1, ck + aj+1))

− log(χ(aj , ck+1 + aj)) − log(χ(aj , ck + aj))

]2/
[(aj+1 − aj)(ck+1 − ck)],

where σ is the prior on smoothing of χ with respect to age and cohort.
The model and smoothing priors are combined with a data likelihood to

produce a posterior distribution on model parameters. The data likelihood is an
offset lognormal model, where each observation i is coded as a triple (vi, si, zi),
and using Ii to denote the integrand of the model parameters corresponding to
this observation, observation i contributes the following to the log-likelihood:

− log(2πs2i )/2 −
(

log(Ii + zi) − log(vi + zi)

2s2i

)2

.

The model is fit by finding the maximum a posteriori value for the parame-
ters, using the Ipopt system for constrained nonlinear optimization.
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2 Specialized/Simplified for CHD

Since CHD is a congenital condition, in all of the modeling in the present paper
the DisMod-PDE model can be simplified to a one-compartment ODE. The first
step in this simplification is to constrain the incidence and remission rates to
be zero for all ages and times (i.e. ι(a, t) = ρ(a, t) = 0). This removes all flow
between compartments, and simplifies the differential equations to the following

dS(a+ τ, t+ τ)

dτ
= −ωS;

dC(a+ τ, t+ τ)

dτ
= −(ω + χ)C.

Since the data we have available is either a measurement of CHD prevalence
or of CHD cause-specific mortality rate, the integrands that appear as Ii in the
model likelihood are C/(S+C) and χ ·C/(S+C). We may further simplify the
model for a rare condition like recalled CHD (with prevalence less than 0.5%) by
constraining ω = 0 and S = 1, which introduces an inaccuracy of less than 1%
in the integrand C/(S + C). This further simplified the differential equations
to a single ODE

dC(a+ τ, t+ τ)

dτ
= −χ(a, t)C(a, t).

Since we assumed that birth prevalence was constant over time, there is a single
parameter C0 which defines the initial conditions C(0, t) = C0. For χ(a, t) we
used knots in age at ages (0, 1, 2, 3, 4, 5, 10, 15, . . . , 65) and knots in cohorts at
5 year age intervals from 1900 to 2020, as well as knots at 2050 and 2100 for
extrapolation.

The stock C was smoothed across cohorts with σ = 1, and the excess mor-
tality χ was smoothed across ages, cohorts, and age/cohort with σ = 1 as
well. For knots outside the time period where data was available (i.e. be-
fore 1968 and after 2010), we constrained χ to be constant in cohort, meaning
χ(a, t− 1) = χ(a, t).

For each age-/time-specific prevalence measurement, we calculated the value
vi as the survey-weighted mean from National Health Interview Survey, and
for the standard deviation si, we used

√
0.003/ni, where ni is the number of

respondents in the survey for the given age and time and 0.003 is a rough
estimate of the prevalence of CHD (per one). We took the offset zi = 1 to make
the error distribution roughly Gaussian.

For each age-/time-specific excess-mortality measurement, we calculated the
value vi as the number of cause-specific deaths in Multiple-Cause Mortality
Files divided by the population from the Human Mortality Database. We set
standard deviation si = 0.05 and offset zi = 10−6, which makes the error
distribution roughly log-normal, with around 5% relative deviations from the
observed data allowed.

To generate uncertainty intervals for our estimates, we used a parametric
bootstrap procedure to resample each prevalence measurements from a binomial
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distribution Bi(ni, vi) with parameter ni equal to the number of respondents in
the survey for this measurement and parameter vi equal to the survey-weighted
mean of responses. We repeated this procedure 1, 000 times and reported the
2.5- and 97.5-th percentile values as our 95% uncertainty intervals.

We fit the model separately for males and females.
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