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Methods

Ordinary correspondence analysis

The core procedure in DCCA is correspondence analysis (CA), a powerful
ordination method classically used for the analysis of contingency tables
[1], and more generally applicable for the analysis of tables of positive or
null values (e.g. genomics data) [2]. Ordinary correspondence analyses are
used to investigate the dependence between rows and columns in a data
set. Theoretical basis underlying CA can be summarized by defining the
following:

• X the n×m matrix of exon-level expression data (n samples, m exons)

• P = X/N the data matrix divided by its grand total

• r the n−dim vector of row sums of P (row weights)

• c the m−dim vector of column sums of P (column weights)

• Dr the n× n diagonal matrix of row sums

• Dc the m×m diagonal matrix of column sums

In correspondence analysis, the main matrix of interest is converted into
a χ2 distance matrix after the following pre-processing data transformation:

Z = D−1/2
r (P − rcT )D−1/2

c (1)

Correspondence analysis performs the singular value decomposition of
Z:
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Z = UΛVT (2)

with Λ the k × k (k = rank(Z)) diagonal matrix of singular values
associated with Z with λ1 ≥ . . . ≥ λk > 0, U an n × k matrix whose
columns are the left singular vectors of Z and V an m × k matrix whose
columns are the right singular vectors of Z. The rows of U and V are
orthonormal with respect to Dr and Dc, respectively:

UTDrU = VTDcV = I (3)

The principal components and row coordinates are given by D
−1/2
r U

and D
−1/2
r UΛ, respectively. The principal axes and column coordinates are

given by D
−1/2
c V and D

−1/2
c VΛ, respectively.

Three-way correspondence analysis

Experimental designs including a repeated measurement of all variables for
all subjects at a second time-point imply 3 dimensional data sets (patient
× exons × time). In the current setting, a pair of tables fully matched on
rows and columns was considered. Several approaches have been proposed
for the analysis of these specific data in the framework of correspondence
analysis. These include methods directly dealing with three-dimensional
structures [3], and a series of methods unrolling the third dimension of the
data into data structures that can be handled by conventional 2-dimensional
CA, such as Foucart’s CA [4] or STATIS-CoA [5]. However, these methods
generally focus on the similarity of the matched tables (by means of a con-
sensus matrix) rather than on their differences. Our data specifically contain
2 exon-array data sets measuring the same set of exon-level expressions for
the same patients, before and 24h after initiation of the treatment. In this
situation where the 2 data sets are fully matched, the main question of in-
terest is the identification of variations related to the immediate treatment
effect. We are interested in analyzing the expression changes measured at
24h, taking the expression at baseline as reference. The analysis should
properly take into account the within-patient experimental design. A few
solutions to this problem have been proposed [6, 7, 8]. The simplest proce-
dure proposed by Torre & Chessel [7], and used in the current work, consists
in staking observation-wise the 2 matrices into one table, and carrying out a
within-class analysis by defining a categorical variable describing each pair
of samples. In this analysis, the within-patient design is accounted for by
partialling out the patient effect, which enables to directly investigate the
differences before vs. after treatment.
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Dually constrained correspondence analysis

Incorporating external constraints in CA is desirable for the direct interpre-
tation of CA in the light of external information structuring the rows and/or
columns of a data set. DCCA is an extension of ordinary CA where 2 sets
of linear constraints are applied on both rows and columns. Two comple-
mentary approaches can be used to impose constraints in the analysis: the
reparametrization method and the null space method [9].

Positive constraints can be applied row-wise and column-wise using the
respective projection operators:

Or = M(MTDrM)−1MTDr (4)

Oc = N(NTDcN)−1NTDc (5)

Negative constraints can be applied row-wise and column-wise using the
respective orthogonal projection operators:

Qr = I − G(GTD−1
r G)−1GTD−1

r (6)

Qc = I − H(HTD−1
c H)−1HTD−1

c (7)

Notice that positive and negative constraints can be combined by exam-
ining the effect of one set of variable X2 while statistically controlling for
the effects of a second set of variables X1. This is done by partialling out
the effect of X1 from X2 using the reparametrization method. The resulting
row-wise and column-wise partial constraints are the following:

O∗
r = M∗(M∗TDrM

∗)−1M∗TDr (8)

with M∗ = (I − X1(X
T
1 DrX1)

−1XT
1 Dr)X2

O∗
c = N∗(N∗TDcN

∗)−1N∗TDc (9)

with N∗ = (I − X1(X
T
1 DcX1)

−1XT
1 Dc)X2

Notice that when applied to the observations only, this type of con-
straints corresponds to the partial canonical correspondence analysis de-
scribed by ter Braak [10].

Depending on the study objective three types of constraints can be ap-
plied row-wise and columns-wise. The last step consists in performing one
of the 9 possible generalized singular value decompositions:
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Z∗ =



D
−1/2
r Or(P − rcT )OT

c D
−1/2
c = U∗Λ∗V∗T

D
−1/2
r Or(P − rcT )QT

c D
−1/2
c = U∗Λ∗V∗T

D
−1/2
r Or(P − rcT )O∗T

c D
−1/2
c = U∗Λ∗V∗T

D
−1/2
r Qr(P − rcT )OT

c D
−1/2
c = U∗Λ∗V∗T

D
−1/2
r Qr(P − rcT )QT

c D
−1/2
c = U∗Λ∗V∗T

D
−1/2
r Qr(P − rcT )O∗T

c D
−1/2
c = U∗Λ∗V∗T

D
−1/2
r O∗

r(P − rcT )OT
c D

−1/2
c = U∗Λ∗V∗T

D
−1/2
r O∗

r(P − rcT )QT
c D

−1/2
c = U∗Λ∗V∗T

D
−1/2
r O∗

r(P − rcT )O∗T
c D

−1/2
c = U∗Λ∗V∗T

(10)

with U∗TDrU
∗ = V∗TDcV

∗ = I
The principal components and row coordinates are given by D

−1/2
r U∗

and D
−1/2
r U∗Λ∗, respectively. The principal axes and column coordinates

are given by D
−1/2
c V∗ and D

−1/2
c V∗Λ∗, respectively.

The contribution of the jth variable to the lth dimension in DCCA is
expressed as follows:

ctrj,l = cj × q2j,l (11)

with cj the weight of the jth variable, and q2j,l the coordinate of the jth

variable (loading) on the lth dimension (principal axes).

Design of experiment

The structure of the current data set and the scheme of DCCA are summa-
rized in Figure 1.

2 tim
e

points

p
 e

xo
n-

le
ve

l 
ex

p
re

ss
io

n 
in

te
ns

iti
es

n patients

Baseline

24h

X
Y

Stacked matrices
Pair of 

matched matrices

Patient ID
Time point
Patient's outcome

[X|Y]

G
en

e 
st

ru
ct

ur
e

} Observation-wise 
constraints

}

Variable-wise 
constraints

-
+
+

+
-

Figure 1: Design of experiment and scheme of Dually Constrained Corre-
spondence Analysis. Two matched tables X and Y are analyzed by DCCA.
The 2 tables are rearranged into one stacked table. Additional external in-
formation on both rows and columns are used as positive and/or negative
constraints.
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The CA model is dually constrained. Variable-wise, a categorical vari-
able indicating which exon belongs to which gene is used either as a positive
constraint (gene-level analysis) or as a negative constraint (exon-level/alternative
splicing analysis). Observation-wise, two categorical variables are defined,
corresponding to the patient identifier and the time when the measurement
was made. Following the previous annotations, the following two transfor-
mations are considered:

Z∗ = D−1/2
r O∗

r(P − rcT )OT
c D−1/2

c (12)

and

Z∗ = D−1/2
r O∗

r(P − rcT )QT
c D−1/2

c (13)

for the gene-level and exon-level analysis, respectively.

Results

Selection of responders based the metagene score

An illustration of selection of responders based the metagene score is given
in Figure 2. Figure 2 depicts the time to progression under BE as a func-
tion of the metagene score. Each dot represent a patient either showing a
progression (plain dot) or censored (empty dot). The red color indicate the
presence of characterized EGFR mutations. Patients with a high metagene
score showed a better response to BE. All EGFR mutated patients (red dots)
had a TTPBE above the median time to progression. However, as shown
in the upper right corner of the plot, several patients without characterized
EGFR mutation showed a satisfactory response to BE.
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Figure 2: Prediction of the response to BE using the metagene score. The
figure is a representation of the time to progression under BE as a function
of the metagene score. Patients with progression (plain dots) or censored
(empty dots), wild type (black dots) or harboring EGFR-mutations (red
dots) are displayed. The horizontal and vertical dashed lines represent the
median time to progression and the median metagene score, respectively.

[5] Gaertner, J.C., Bertrand, J., Souplet, A.: Statis-coa: A methodological
solution to assess the spatio-temporal organization of species assem-
blages. application to the demersal assemblages of the french mediter-
ranean sea. Scientia Marina 66(S2) (2002)

[6] Greenacre, M.J.: Singular value decomposition of matched matrices.
Journal of Applied Statistics 30(10), 1101–1113 (2003)

[7] Torre, F., Chessel, D.: Co-structure de deux tableaux totalement ap-
paris. Rev. Statistique Applique 43, 109–121 (1995)

[8] Lafosse, R.: Ressemblance et diffé’rence entre deux tableaux totalement
appariés. Rev. Statistique Appliquée 43, 109–121 (1995)

6
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