Additional file 1

IN VITRO EFFECTS OF INTERLEUKIN (IL)-1 BETA INHIBITION ON THE EPITHELIAL-TO-MESENCHYMAL TRANSITION (EMT) OF RENAL TUBULAR AND HEPATIC STELLATE CELLS.

Valentina Masola^{*1}, Amedeo Carraro^{*2}, Simona Granata¹, Lorenzo Signorini¹, Gloria Bellin¹, Paola

Violi², Antonio Lupo¹, Umberto Tedeschi², Maurizio Onisto³, Giovanni Gambaro⁴, Gianluigi Zaza¹.

*These authors contributed equally to this work.

Additional Method

Gene expression analysis for Mmp-9

Both cell types were treated with TGF- β (10 ng/ml) or IL-1 β (10 ng/ml) in the presence or absence of Canakinumab (5 µg/ml) for 6 hours. Then, whole RNA was extracted using Trizol reagent (Invitrogen), following the manufacturer's instructions. Quantity and quality of RNA were checked using the Nanodrop spectrophotometer (EuroClone). Total RNA was reverse-transcribed into cDNA using the reverse transcriptase SuperScript II (Invitrogen). Real Time-PCR reactions were performed with the ABI-Prism 7500 using Power SYBR Green Master Mix 2 (Applied Biosystem) and specific primers for *Mmp-9* and *Glyceraldehyde-3-phosphate dehydrogenase* (*Gapdh*). The primer sequences for Mmp-9 was: Forward 5'-CCTGGAGACCTGAGAACCAATC-3' and reverse 5'-CCACCCGAGTGTAACCATAGC-3'. The comparative Ct method ($\Delta\Delta$ Ct) was used to quantify gene expression, and the relative guantification was calculated as 2- $\Delta\Delta$ Ct. The GAPDH gene amplification was used as a

¹ Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy; ² Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy;

³ University of Padova, Department of Biomedical Sciences, Via Ugo Bassi, 58/B, 35131, Padova, Italy;

⁴ Division of Nephrology and Dialysis, Columbus-Gemelli Hospital Catholic University, School of Medicine, Largo Agostino Gemelli 8, 00168, Rome, RM, Italy.

reference standard to normalize the target signal. Amplification specificity was controlled by melting curve analysis.

Additional results

Figure S2. Enzymatic activity of MMP-9 in HK-2. (A) Gelatin zymography shows the activity of MMP-9 in the conditioned media of HK-2 cells treated for 24 h with TGF- β (10 ng/ml) or IL-1 β (10 ng/ml) in the presence or absence of Canakinumab (5 µg/ml). **(B)** The histogram represents the densitometric analysis of enzymatic activity of MMP-9 as a mean±SD of three experiments. The p value was calculated with the t-test. **p<0.001 versus untreated control cells (CTR); °°p<0.01 vs TGF- β untreated; ##p<0.01 vs IL-1 β untreated.

Figure S3. Gene expression of Metalloproteinase-9 (MMP-9) in LX-2. Gene expression of *Mmp*-9 measured by Real Time-PCR in LX-2 cells treated with IL-1 β or TGF- β with and without Canakinumab. Expression levels are normalized to *Gapdh*. Data are indicated as mean±SD of three experiments performed in triplicate. The p value was calculated with the t-test. **p<0.001 versus untreated control cells (CTR); °p<0.05 vs TGF- β untreated; #p<0.05 vs IL-1 β untreated.

Figure S4. Enzymatic activity of MMP-9 in LX-2. Gelatin zymography shows the activity of MMP-9 in the conditioned media of LX-2 cells treated for 24 h with TGF- β (10 ng/ml) or IL-1 β (10 ng/ml) in the presence or absence of Canakinumab (5 μ g/ml). MMP-9 activity was not detectable in this cell line.