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Text S1. Detailed description of the methods 

RNA-seq data collection and analysis 

The RNA-seq data of tumor cells (TCs) and tumor-associated macrophages (TAMs) in mice 

bearing gliomas were downloaded from the GEO website 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69104) with the accession number 

GSE69104 [1]. A CSF1R inhibitor, BLZ945, was used to treat the mice. The mice were divided 

into 3 groups, i.e., Vehicle (Veh), Endpoint (Ep, i.e., drug-sensitive), and Rebound (Reb, i.e., 

drug-resistant) tumors. Because our study was designed to construct a gene association 

network that connects TCs and TAMs, we selected TC-TAM paired samples that contained 

gene expression data for both TCs and TAMs but did not consider TC-TAM unpaired samples 

that contained only TCs or TAMs. 

The collected dataset (N=15) included S (=6) samples of sensitive mice in the Ep group, R 

(=4) samples of mice in the Reb group, and N-S-R (=5) Veh samples. Therefore, the sample 

set M = (𝑠1, 𝑠2, … , 𝑠𝑁) could be divided into the following three subsets: 

 𝐸𝑝 = (𝑠1, 𝑠2, … , 𝑠𝑆). (S1) 

 𝑅𝑒𝑏 = (𝑠S+1, 𝑠S+2, … , 𝑠S+R), (S2) 

 𝑉𝑒ℎ = (𝑠S+R+1, 𝑠S+R +2, … , 𝑠𝑁). (S3) 

Each sample contained the gene expression data of two cell types, i.e., TCs and TAMs. We 

denote 

 𝑠𝑖 = (𝑐𝑖,1, 𝑐𝑖,2), (𝑖 = 1,2, … , 𝑁), (S5) 

where 𝑐𝑖,1 and 𝑐𝑖,2 represent the TAMs and TCs of the 𝑖-th sample. The expression data of 

genes in TCs or TAMs could be described as follows: 

( ) ( ), , ,1 , ,,,2 ,,  1, , ;  1,2;  1, ,g , ,ii p ri p i p p i p mC g g g i N p r m= = = =， ， ，，  (S6) 

where , ,i p rg  represents the expression of gene r in cell type p (TC or TAM) of the 𝑖-th sample. 

We normalized the gene expression levels of each gene in the Rebound (Reb) and Endpoint 

(Ep) samples with respect to their mean expression levels in the Vehicle (Veh) samples to 

evaluate the relative changes in drug response. For each gene 𝑟, we performed the following 

calculation: 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69104
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where , ,i p rg  represents the normalized expression level of gene 𝑟 in cell type p (TC or TAM) 

of the 𝑖-th sample, and �̅�𝑝,𝑟  denotes the mean expression of gene 𝑟 in cell p of the Veh 

sample. There were S (=6) samples of Ep mice and R (=4) samples of Reb mice. N (=15) is the 

number of total samples, and thus, N-(S+R) is the number of Veh samples. Note that each 

sample included both two type cells (TC and TAM). 

Selection of differentially expressed genes 

We used a t-test and fold change to select the differentially expressed genes (DEGs) in TCs or 

TAMs between the Reb and Ep groups. 

Let ( )1, , 2, , , ,, , ,p i p i S p iix g g g  =  and ( )S+1, , 2, , , ,, , ,p i S p i S R pi iy g g g  

+ +=  denote the 

normalized expression of each gene 𝑖 in TCs (p=1) or TAMs (p=2) from the Reb and Ep 

samples, respectively. We calculated the two-sided t-test p-value for each gene in TAMs and 

TCs, which were adjusted by false discovery rate (FDR). When the FDR-adjusted p-value was 

less than 0.05, we considered it to be statistically significant. If the p-value of a gene in TAMs 

was less than 0.05, this gene was collected into a set called Q1; if the p-value of a gene in TCs 

was less than 0.05, this gene was collected into a set called Q2. We then calculated the fold 

change of the expression of each gene in sets Q1 and Q2 between the Reb and Ep samples as 

follows: 

 i i if x y= . (S13) 

where ix  and iy  represent the mean value of expression levels of gene 𝑖 in the Reb and Ep 

samples, respectively. According to the values of if , we selected the top 50 genes in each of 

Q1 and Q2, which constituted the DEG sets of TAMs and TCs, denoted as U1 and U2, 

respectively. The heatmaps of DEGs in TAMs (Figure S1A) and TCs (Figure S1B) across all 

samples demonstrated that the gene expression profile of the Reb samples was significantly 

different from that of Ep samples.   

Sample-specific multicellular gene correlation network 

We used the following Pearson’s correlation coefficient (PCC) to measure the correlation 

between each pair of genes within U1 (the DEG sets of TAMs) or U2 (the DEG sets of TCs) and 

between U1 and U2. 
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where x=(x1, x2,…, xn) and y=(y1, y2,…, yn) represent the expression levels of the two genes, and 

�̅� and �̅� represent their mean values, respectively. n is the sample size to be specified in the 

following text. 
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We first constructed the sensitive network (Figure 1A) based on the PCCs calculated from the 

sensitive samples (i.e., Ep samples, n=S). The nodes in the sensitive network were DEGs in 

U1 and U2. The edges in the sensitive network were determined by the PCCs (|PCC|>0.95 and 

p-value < 0.05) between each pair of nodes. The nodes were grouped into TC class and TAM 

class. Therefore, the sensitive TC-TAM gene network consisted two types of edges, i.e., 

‘intracellular edges’ within TCs or TAMs and ‘intercellular edges’ between TCs and TAMs.  

Given the small sample size of the Reb group, based on the work of one of our authors [2], we 

developed a network perturbation analysis method by combining each single Reb sample with 

all reference samples (all samples in the Ep group) for network construction and analysis. More 

specifically, we then generated 4 sets of perturbed samples by adding each single Reb sample 

(Rebi, i=1, 2, 3, 4) to the reference samples (i.e., sensitive samples) and constructed 4 resistant 

sample-specific gene correlation networks. The edges with high PCCs (|PCC|>0.95 and p-value 

< 0.05) were utilized to build resistant TC-TAM gene correlation networks.  

As a result, we constructed a sensitive network (i.e., reference network) and 4 perturbation 

networks. These networks are multicellular gene networks since they not only convey gene 

associations within TCs or TAMs but also build connections between these two types of cells 

(Figure 1B). The multicellular gene network approach developed in this study provides a way 

to dissect the potential interactions between tumor cells and the microenvironmental cells 

during the acquision and development of drug resistance.  

Differential network 

The addition of each single Reb sample induced differences between the reference and 

perturbation networks. If the gene expression profile in the added sample Rebi was similar to 

that in the Ep samples, the perturbation of the PCC was negligible. However, if some gene 

expression levels were remarkably different between the single Reb sample and the Ep 

samples, significant changes in the PCCs of certain gene-pairs were induced when Rebi was 

added to the reference samples. 

For network perturbation analysis (Figure 1C), the robust significantly different PCCs (ΔPCCi 

= 𝑃𝐶𝐶𝑆+𝑖 − 𝑃𝐶𝐶𝑆 , i=1,2,3,4) of gene pairs were utilized to construct a differential network. 

Specifically, we selected significantly different edges, represented by ΔPCC, by setting a 

threshold of |ΔPCC|>0.5 for each perturbation network versus the sensitive network. If a gene-

pair association was significantly changed in at least 3 perturbation networks compared to the 

reference network, this edge was selected as a robust differential edge, which constituted the 

final differential network. 

For further network analysis, we defined three types of edges in the differential network: 

correlation-gained edges (ΔPCC>0), correlation-lost edges (ΔPCC<0), and correlation-

invariant edges (ΔPCC=0). The patterns of such edges in the differential network might provide 

biological insights to better understand the acquisition of drug resistance. 

We used R script to perform data analysis and network construction and used ‘Cytoscape’ 

software to visualize the constructed multicellular gene networks. 

Differential network-based COX regression 
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The differential network captures the robust topological differences between the sensitive 

network and perturbation networks. Therefore, the differential network reflects the potential 

change in the gene association across TCs and TAMs during the acquisition and development 

of drug resistance. The genes in the differential network should play important roles in 

promoting tumor growth even under drug treatment conditions. We hypothesized that the 

expression levels of genes in the differential network are associated with the survival outcomes 

of glioma patients. Therefore, we next developed a differential network-based COX regression 

method to identify prognostic gene signatures for glioma patients. 

We collected clinical information and RNA-seq gene expression data from glioma patients in 

the CGGA database (http://www.cgga.org.cn/) and TCGA database 

(https://cancergenome.nih.gov/). We also mapped the gene symbols in the initial mouse RNA-

seq data (contains 23337 genes) to those of genes in homo sapiens, resulting in a list of 16761 

mapped genes. The names of mouse genes in the differential network were thus mapped to 29 

candidate genes in human. The names of genes in the differential network were thus mapped 

to 29 candidate genes, constituting the gene set  . By matching both the patient sample IDs 

and the gene names from the clinical information and gene expression data, a cohort of 310 

glioma patients in the CGGA dataset and an independent cohort of 690 glioma patients in the 

TCGA dataset were prepared for learning and validation, respectively. 

The available survival data are in the form 1

1 1( ,  X ,  )y  , …, 
N( ,  X ,  )N

Ny  . The survival time 

iy  is the observed event time if i =1 and right censored if i =0. Xi
 denotes the 

expression levels of genes in the differential network for the i-th patient, and N=690 and 310 

for the TCGA and CGGA datasets, respectively. The COX proportional hazards (PH) model 

assumes that 

( ) ( )0

1

| exp
m

i i

i

H t X H t x
=

 
=   

 
 , (S16) 

where ( )|H t X  is the hazard function at time t for each patient given predictor values X = (x1, 

x2, …, xm), 
ix  is the expression level of gene i involved in the differential network, and m is 

the number of genes in gene set  . ( )0H t  is an arbitrary baseline hazard function. i  is 

the regression coefficient of gene i in the COX PH model. 

The likelihood of the above model is defined as follows: 
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where D is the set of indices of the failures, Rr is the set of indices of the individuals at risk 

at time tr, and jr is the index of the failure at time tr. 

We estimated the parameters ( )1= , m  ,  in the above COX PH model using the following 

LASSO-type log-partial likelihood method: 

http://www.cgga.org.cn/
https://cancergenome.nih.gov/
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   = + , (S18) 

where   is the tuning parameter for the L1-penalty term. A 10-fold cross-validation was 

performed to select the optimal values of the tuning parameter
 
for minimizing the mean cross-

validation error. The R package "glmnet" was used to perform the LASSO method. 

The nonzero components in the estimated ̂  at the optimal tuning parameter were computed 

as risk coefficients, which were used to formularize a risk signature using the learning dataset. 

More precisely, we formulated the following risk score (RS) for each patient based on the 

expression levels of the selected genes: RS =  (0.001695826 × ANPEP) + (0.001351164 × 

DPP4) + (0.828492221 × PRRG1) + (0.002693736 × GPNMB) + (0.572250065 × TMEM26) + 

(0.011112329 ×  PXDN) + (0.000861924  × CDH6) – (0.877296902 × SCN3A) – 

(0.042307865 × SEMA6B) + (0.019673956× CCDC37) + (1.184362541 × FANCA) + 

(0.101032334× NETO2). 

The same risk signature was used to compute the risk scores for patients in the validation 

dataset. The patients in each dataset were classified into a high-risk group and a low-risk group 

according to the optimal cutoff value using the ROC method. The Kaplan–Meier (K–M) curves 

for patients in two groups were analyzed, and the statistical significance of the difference was 

assessed using the two-sided log-rank test. Time-dependent ROC analysis was further 

conducted to evaluate the prognostic accuracy of the above risk score with respect to the 3- 

and 5-year survival predictions of patients in both the learning and validation sets. 

Targeted therapeutic response prediction 

Survival and gene expression data for glioma patients who received targeted therapies in the 

validation set were extracted to evaluate the predictive effectiveness of the macrophage-related 

gene signature for classifying patients into drug-sensitive and drug-resistant groups. The 3- or 

5-year survival status (alive or dead) was defined as the outcome (sensitive or resistant) of 

targeted drug treatment. The above risk signature was used to classify each patient into a 

sensitive group (i.e., low-risk group) or a resistant group (i.e., high-risk group) according to the 

optimal cutoff value of the risk score using the ROC method. To further compare the predictive 

power of different gene signatures for predicting the responses to the targeted therapy, we 

calculated the AUCs of the ROC curves to assess their accuracies. 

Multivariate COX regression analysis and the combined signature 

To assess whether the macrophage-related gene signature was independently correlated with 

the prognosis of glioma patients, we conducted univariate and multivariate COX regression 

analyses of clinicopathological factors and available gene signatures. Clinicopathological 

information, including age, gender and grade, was available for glioma patients in both the 

learning and validation sets. We also included the following gene signatures in the multivariate 

COX regression analyses: Signature 1: macrophage-related gene signature; Signature 2: 

EGFR gene signature; Signature 3: Cheng et al. signature. 
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The above risk factors that were significantly correlated with the overall survival and 5-year 

survival of glioma patients in both the learning and validation datasets were extracted to 

construct a combined signature using the LASSO method for variable selection. As a result, we 

defined the combined signature as follows: CS = (0.008974621 × Age) + (1.617859481 × Grade) 

+ (0.940077644 × Signature_1) + (0.006408624 × Signature_3). Here, Grade = 1 for lower 

grade glioma, and Grade = 2 for high grade glioma. 

We examined whether the combined signature could significantly improve the prognostic 

accuracy of the macrophage-related gene signature. The areas under time-dependent ROC 

curves were calculated to compare the prognostic accuracies of age, grade (low- or high- 

grade), signature 1 (i.e., the macrophage-related gene signature), signature 3 (i.e., Cheng et 

al. signature) and the combined signature.  
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Table S1. Scheme of sample grouping. 

 

 

 

 

  

Grouping Name of Sample Name of Gene Chip

Reference 

sample
EP 49823_EP, 49825_EP, 49830_EP, 49831_EP, 49843_EP, 49845_EP 

Pertubed

samples

EP REB1
49823_EP, 49825_EP, 49830_EP, 49831_EP, 49843_EP, 49845_EP, 

49041_Reb

EP REB2
49823_EP, 49825_EP, 49830_EP, 49831_EP, 49843_EP, 49845_EP, 

49059_Reb

EP REB3
49823_EP, 49825_EP, 49830_EP, 49831_EP, 49843_EP, 49845_EP, 

49827_Reb

EP REB4
49823_EP, 49825_EP, 49830_EP, 49831_EP, 49843_EP, 49845_EP, 

49849_Reb
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Table S2. List of genes in the differential network. 

Gene Symbol Description 

Fanca Fanconi Anemia Complementation Group A 

Ltc4s Leukotriene C4 Synthase 

Spsb4 SplA/Ryanodine Receptor Domain And SOCS Box Containing 4  

Pxdn Peroxidasin 

Ptk7 Protein Tyrosine Kinase 7 (Inactive)  

Cdh6 Cadherin 6 

Wfdc1 WAP Four-Disulfide Core Domain 1 

Col19a1 Collagen Type XIX Alpha 1 Chain 

2810433D01Rik 
 

5033406O09Rik 
 

Ptger2 Prostaglandin E Receptor 2 

Tanc1 Tetratricopeptide Repeat, Ankyrin Repeat And Coiled-Coil Containing 1  

Cd24a CD24 Antigen (Small Cell Lung Carcinoma Cluster 4 Antigen)  

Tmem26 Transmembrane Protein 26 

Gpr171 G Protein-Coupled Receptor 171 

Btla B And T Lymphocyte Associated 

Scn3a Sodium Voltage-Gated Channel Alpha Subunit 3 

Lyz1 Lysozyme 

Abcg4 ATP Binding Cassette Subfamily G Member 4  

Arg1 Arginase 1 

Sema6b Semaphorin 6B 

Pcdhb19 Protocadherin Beta 19 Pseudogene 

Ptprf Protein Tyrosine Phosphatase, Receptor Type F 

BC068157 Proline Rich 36 

Mip Major Intrinsic Protein Of Lens Fiber 

Neto2 Neuropilin And Tolloid Like 2 

Dpp4 Dipeptidyl Peptidase 4 

Gm11744 Photoreceptor Disc Component 

Xcr1 X-C Motif Chemokine Receptor 1 

Sh3tc2 SH3 Domain And Tetratricopeptide Repeats 2 

Retnlg Resistin Like Beta 

Eps8l2 EPS8 Like 2 

Mir1931 
 

Rep15 RAB15 Effector Protein 

Cd4 CD4 Molecule 

B330016D10Rik 
 

3110047P20Rik NACHT And WD Repeat Domain Containing 2 

Anpep Alanyl Aminopeptidase, Membrane 

Zfp811 
 

Prrg1 Proline Rich And Gla Domain 1 

Mia1 Cilia And Flagella Associated Protein 100 

Gpnmb Glycoprotein Nmb 
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Table S3  Univariate Cox regression analysis for the association of each signature gene with 

the overall survival of glioma patients. 

 

 

  

Symbol Gene Name Cells HR (95%) P value 

ANPEP    Alanyl Aminopeptidase, Membrane MФ 1.043 (1.027-1.059) 2e-05 

DPP4 Dipeptidyl Peptidase 4 MФ 1.054 (1.030-1.079) 4e-04 

PRRG1 Proline Rich And Gla Domain 1 MФ 1542 (11.69-203497) 0.005 

GPNMB    Glycoprotein Nmb MФ 1.068 (1.031-1.105) 0.003 

TMEM26 Transmembrane Protein 26 MФ 2.708 (2.088-3.511) 1e-09 

PXDN Peroxidasin TC 1.032 (1.023-1.041) 2e-09 

CDH6 Cadherin 6 TC 1.119 (1.079-1.161) 1e-07 

SCN3A    Sodium Voltage-Gated Channel Alpha Subunit 3 TC 0.021 (0.003-0.158) 2e-05 

SEMA6B Semaphorin 6B TC 0.915 (0.890-0.941) 1e-12 

CCDC37    Cilia- and flagella-associated protein 100 TC 1.038 (1.022-1.054) 9e-04 

FANCA  Fanconi anaemia, complementation group A TC 6.616 (3.381-12.95) 3e-06 

NETO2 Neuropilin And Tolloid Like 2 TC 2.049 (1.503-2.794) 9e-05 
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Table S5. Experimental evidences for functional roles of the 5 macrophage-related genes in 

cancer progression and/or drug resistance.  

 

 

The table lists the gene name, the biological functions in cancers and the corresponding 

PubMed IDs and literature references of each of the eight-macrophage-related genes. 

  

Gene Functional roles in cancers PMID Refs 

ANPEP Silencing FLI or targeting CD13/ANPEP lead to 

dephosphorylation of EPHA2, a mediator of BRAF inhibitor 

resistance, and induce growth arrest or apoptosis in 

melanoma cells 

29048432 

[3] 

CD13-positive bone marrow-derived myeloid cells promote 

angiogenesis, tumor growth, and metastasis 
24297924 

[4] 

DPP4 Dipeptidylpeptidase 4 inhibition enhances lymphocyte 

trafficking, improving both naturally occurring tumor immunity 

and immunotherapy 

26075911 [5] 

DPP4 in anti-tumor immunity: going beyond the enzyme 26233333 [6] 

Suppression of lung metastases by the CD26/DPP4 inhibitor 

Vildagliptin in mice 

26194276 [7] 

PRRG1 Cancer development 26233958 [8] 

GPNMB Glioma-associated microglia/macrophages display an 

expression profile different from M1 and M2 polarization and 

highly express Gpnmb and Spp1 

25658639 

[9] 

Glycoprotein nonmetastatic melanoma protein B, a potential 

molecular therapeutic target in patients with glioblastoma 

multiforme 

16609006 

[10] 

TMEM26 Expression of transmembrane protein 26 (TMEM26) in breast 

cancer and its association with drug response 

27224909 [11] 
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Figure S1 

 

Figure S1. Heatmaps showing the hierarchical clustering of the differential gene expression 

profiles of TAMs (A) and TCs (B) between the Endpoint and Rebound groups.  

 

  

BA
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Figure S2 

 

 

Figure S2. TC-TAM sensitive network and its topological attributes. (A) High-associated 

sensitive network. The node label represents the gene name. The size of the node represents 

its connectivity. The orange and blue nodes represent the genes in TAMs and TCs, respectively. 

High correlations (p-value less than 0.05, absolute value over 0.95) were utilized to construct 

the networks. The black edges represent the high correlations of gene pairs across TAMs and 

TCs; the orange and blue edges represent correlations of gene pairs within TAMs and TCs, 

respectively. The solid edge represents the positive correlation, and the dotted edge represents 

the negative correlation. (B) Topological attributes of the high-associated sensitive network. 

  

Number of nodes 35

Network diameter 2

Network centralization 0.047

Average number of neighbors 1.486

A

B
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Figure S3 

 

Figure S3. Ep U Reb1 sample-specific TC-TAM perturbation network and its topological 

attributes. (A) High-associated sample-specific perturbation network. The node label 

represents the gene name. The size of the node represents its connectivity. The orange and 

blue nodes represent the genes in TAMs and TCs, respectively. High correlations (absolute 

value over 0.95, p-value less than 0.05) were utilized to construct the network. The black edges 

represent the high correlation of gene pairs across TAMs and TCs; the orange and blue edges 

represent correlations of gene pairs within TAMs and TCs, respectively. The solid edge 

represents the positive correlation, and the dotted edge represents the negative correlation. (B) 

Topological attributes of Ep U Reb1 sample-specific TC-TAM perturbation networks. 

  

Number of nodes 72

Network diameter 14

Network centralization 0.092

Average number of neighbors 2.667

A

B
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Figure S4 

 

Figure S4. Ep U Reb2 sample-specific TC-TAM perturbation network and its topological 

attributes. (A) High-associated sample-specific perturbation network. The node label 

represents the gene name. The size of the node represents its connectivity. The orange and 

blue nodes represent the genes in TAMs and TCs, respectively. High correlations (absolute 

value over 0.95, p-value less than 0.05) were utilized to construct the network. The black edges 

represent the high correlation of gene pairs across TAMs and TCs; the orange and blue edges 

represent correlations of gene pairs within TAMs and TCs, respectively. The solid edge 

represents the positive correlation, and the dotted edge represents the negative correlation. (B) 

Topological attributes of Ep U Reb2 sample-specific TC-TAM perturbation networks. 

 

  

Number of nodes 73

Network diameter 15

Network centralization 0.070

Average number of neighbors 3.123

A

B
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Figure S5 

 

Figure S5. Ep U Reb3 sample-specific TC-TAM perturbation network and its topological 

attributes. (A) High-associated sample-specific perturbation network. The node label 

represents the gene name. The size of the node represents its connectivity. The orange and 

blue nodes represent the genes in TAMs and TCs, respectively. High correlations (absolute 

value over 0.95, p-value less than 0.05) were utilized to construct the network. The black edges 

represent the high correlation of gene pairs across TAMs and TCs; the orange and blue edges 

represent correlations of gene pairs within TAMs and TCs, respectively. The solid edge 

represents the positive correlation, and the dotted edge represents the negative correlation. (B) 

Topological attributes of Ep U Reb3 sample-specific TC-TAM perturbation networks. 

 

 

 

  

Number of nodes 36

Network diameter 6

Network centralization 0.069

Average number of neighbors 1.722

A

B
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Figure S6 

 

Figure S6. Ep U Reb4 sample-specific TC-TAM perturbation network and its topological 

attributes. (A) High-associated sample-specific perturbation network. The node label 

represents the gene name. The size of the node represents its connectivity. The orange and 

blue nodes represent the genes in TAMs and TCs, respectively. High correlations (absolute 

value over 0.95, p-value less than 0.05) were utilized to construct the network. The black edges 

represent the high correlation of gene pairs across TAMs and TCs; the orange and blue edges 

represent correlations of gene pairs within TAMs and TCs, respectively. The solid edge 

represents the positive correlation, and the dotted edge represents the negative correlation. (B) 

Topological attributes of Ep U Reb4 sample-specific TC-TAM perturbation networks. 

 

 

  

Number of nodes 62

Network diameter 8

Network centralization 0.117

Average number of neighbors 3.065

A

B
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Figure S7 

 

Figure S7. Network topological analysis of the sensitive network and 4 sample-specific 

perturbation networks. Node numbers (A) and edge numbers (B) of the sensitive network (Ep) 

and 4 sample-specific perturbation networks (EpURebi, i=1, 2, 3, 4). 
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Figure S8 

 

Figure S8. Prognostic accuracies of LASSO Cox signature and correlation network-based 

signature. (A-B) Time-dependent ROC curves of the LASSO Cox signature evaluated on the 

learning set (A) and the test set (B). (C-D) Time-dependent ROC curves of the correlation 

network-based signature evaluated on the learning set (C) and the test set (D).   

 

  

A BLASSO Cox LASSO Cox

C DCorrelation Network Correlation Network
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