Pancreatic Cancer Analysis

Bravo, Williams, and Acharjee 19 Sept 2018

#Libraries

Begin Block 1

setwd("~/AnimeshReview/LauraPaper/Journal of Translational Medicine /LauraFinal/") library(readxl) library(data.table) library(tidyverse) library(dplyr) library(devtools) library(ggcorrplot) library(car) library(ggpubr) library(glmnet) library(summarytools) library(knitr) library(htmltools) library(corrplot) library(caret) library(factoextra) library(Metrics) library(readr) library(gplots) library(dplyr) library(stringr) library(readxl) library(plotly) library(e1071) library(ggplot2) library(reshape2) library(multtest) library(ROCR) library(gridExtra) library(MLmetrics) #### Begin Load Laura's Functions doubleAUCfun <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre> yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k]) model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))</pre> new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre> p3<-predict(model3,new3,type="response")</pre> new5<-data.frame(Outcome=ytest)</pre> pr3 <- prediction(p3, new5)</pre>

```
prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
doubleAUCfunNB <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model4<-naiveBayes(Outcome~Predictor+Predictor2,data=yy3)</pre>
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p4<-predict(model4,new4,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
    }
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
doubleAUCfunRFCross <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    control <- trainControl(method="repeatedcv", number=10, repeats=3) #Is this the only thing needed f
    seed <- 7
    metric <- "Accuracy"</pre>
    set.seed(seed)
    #mtry <- 2
    tunegrid <- expand.grid(.mtry=c(1:6))</pre>
    set.seed(seed)
    rf_default <- train(Outcome~Predictor+Predictor2,data=yy3, method="rf", metric=metric, tuneGrid=tun
    #print(rf_default)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    pred=predict(rf_default, new4,type="prob")
    pred2=predict(rf_default, new4)
    prob2<-NULL
    for (i in 1:dim(pred)[1]){
        prob2[i] <-pred[i,2]/pred[i,1]</pred[i,1]
    }
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
```

```
2
```

```
doubleAUCfunSVM <- function(xtrain, ytrain,xtest,ytest,s,k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    seed <-7
    set.seed(seed)
    model3<-svm(Outcome~Predictor+Predictor2,data=yy3)</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,decision.values = TRUE)
    p4<-attr(p3,"decision.values")
    new5<-data.frame(Outcome=ytest)</pre>
    pr3<- prediction(p4, new5)</pre>
    #table(p3, new5)
    #confusionMatrix(p3, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
doubleAUCfunSVMCross <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    seed <- 7
    set.seed(seed)
    model4<-svm(Outcome~Predictor+Predictor2,data=yy3,method="C-classification",</pre>
                 kernel="radial", gamma = 0.01, cost = 100, cross=10, probability=TRUE)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p4<-predict(model4,new4,decision.values = TRUE)</pre>
    p5<-attr(p4,"decision.values")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p5, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc30y.values[[1]]</pre>
    result2<-auc3
}
doublePlusfun <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr <- prediction(p3, new5)</pre>
    Acc <- performance(pr, measure="acc")</pre>
    AccV<-Acc@y.values[[1]] [max(which(Acc@x.values[[1]] >= 0.5))]
    Sens <- performance(pr, measure= "sens")</pre>
    SensV<-Sens@y.values[[1]][max(which(Sens@x.values[[1]] >= 0.5))]
    Spec <- performance(pr, measure= "spec")</pre>
    SpecV<-Spec@y.values[[1]][max(which(Spec@x.values[[1]] >= 0.5))]
    Prec <- performance(pr, measure= "prec")</pre>
    PrecV<-Prec@y.values[[1]][max(which(Prec@x.values[[1]] >= 0.5))]
```

```
AllV<-data.frame(Vector=c(AccV, SensV, SpecV, PrecV))</pre>
    return(AllV)
}
doubleROCfun <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    result<-prf3
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    return(result)
}
MeansNames <- function(doubleAUCR,trial){</pre>
    doubleAUCR<-as.data.frame(doubleAUCR)</pre>
    doubleAUCR<-mutate(doubleAUCR, Means=rowMeans(doubleAUCR))</pre>
    row.names(doubleAUCR)<-trial</pre>
    return(doubleAUCR)
}
multipleAUCfun <- function(xtrain,ytrain,xtest,ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(xtest)</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(result2)
}
multipleAUCfunNB <- function(xtrain, ytrain, xtest, ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model4<-naiveBayes(Outcome~.,data=yy3)</pre>
    new3<-data.frame(xtest)</pre>
    p4<-predict(model4,new3,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
```

```
}
    new5<-data.frame(Outcome=vtest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(result2)
}
multipleROCfun <- function(xtrain,ytrain,xtest,ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(xtest)
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(prf3)
}
multipleROCfunNB <- function(xtrain, ytrain, xtest, ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model4<-naiveBayes(Outcome~.,data=yy3)</pre>
    new3<-data.frame(xtest)
    p4<-predict(model4,new3,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
    }
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(prf3)
}
singleAUCfun <- function(xtrain, ytrain, xtest, ytest, s) {</pre>
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])</pre>
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))</pre>
    new2<-data.frame(Predictor=xtest[,s])</pre>
    p<-predict(model2,new2,type = "response")</pre>
    new4<-data.frame(Outcome=ytest)</pre>
```

```
pr <- prediction(p, new4)</pre>
    prf <- performance(pr, measure = "tpr", x.measure = "fpr")</pre>
    auc <- performance(pr, measure = "auc")</pre>
    auc <- auc@y.values[[1]]</pre>
    return(auc)
}
singlePlusfun <- function(xtrain, ytrain, xtest, ytest, s) {</pre>
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])</pre>
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))</pre>
    new2<-data.frame(Predictor=xtest[,s])</pre>
    p<-predict(model2,new2,type = "response")</pre>
    new4<-data.frame(Outcome=ytest)</pre>
    pr <- prediction(p, new4)</pre>
    Acc <- performance(pr, measure="acc")</pre>
    AccV<-Acc<sup>0</sup>y.values[[1]][max(which(Acc<sup>0</sup>x.values[[1]] >= 0.5))]
    Sens <- performance(pr, measure= "sens")</pre>
    SensV<-Sens@y.values[[1]] [max(which(Sens@x.values[[1]] >= 0.5))]
    Spec <- performance(pr, measure= "spec")</pre>
    SpecV<-Spec@y.values[[1]] [max(which(Spec@x.values[[1]] >= 0.5))]
    Prec <- performance(pr, measure= "prec")</pre>
    PrecV<-Prec@y.values[[1]] [max(which(Prec@x.values[[1]] >= 0.5))]
    AllV<-data.frame(Vector=c(AccV, SensV, SpecV, PrecV))</pre>
    return(AllV)
}
singleROCfun <- function(xtrain, ytrain, xtest, ytest, s) {</pre>
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])</pre>
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))</pre>
    new2<-data.frame(Predictor=xtest[,s])</pre>
    p<-predict(model2,new2,type = "response")</pre>
    new4<-data.frame(Outcome=ytest)</pre>
    pr <- prediction(p, new4)</pre>
    prf <- performance(pr, measure = "tpr", x.measure = "fpr")</pre>
    resultU2<-prf
    tomeany<-as.data.frame(prf@y.values)</pre>
    tomeanx<-as.data.frame(prf@x.values)</pre>
    auc <- performance(pr, measure = "auc")</pre>
    auc <- auc@y.values[[1]]</pre>
    return(resultU2)
}
```

set.seed(132)

```
### Load Pancreatic Cancer Dta
setwd("/Users/j.williams/AnimeshReview/LauraPaper/Journal of Translational Medicine /LauraFinal/Sept18_
All2 <- readRDS("All2.Pancreatic.rds"); savee <- readRDS("savee.Pancreatic.rds")
#TRAIN
### set n to 10 for now to make quicker
n<-100 #Number of LASSO and EN loops. Per loop a model with features selected. The 80% most popular fea
#N and nn control the number of models created for combinatorial analysis to help in further feature se
N < -10
nn <-25
ErrorsFinEN<-vector(mode="double", length=n)</pre>
BetasFinEN<-vector(mode="character", length=n)</pre>
LambdaFinEN<-vector(mode="double", length=n)</pre>
BNumFinEN<-vector(mode="double", length=n)</pre>
see2EN<-data.frame(All="All")</pre>
LauCoef1<-data.frame(Coeff="See",stringsAsFactors=FALSE)</pre>
BetasTodo<-data.frame(Features="Name",Coefficients=1)</pre>
ListError<-vector(mode="double", length=n)</pre>
BetasFin<-vector(mode="character", length=n)</pre>
LambdaFin<-vector(mode="double", length=n)</pre>
BNumFin<-vector(mode="double", length=n)</pre>
see2<-data.frame(All="All")</pre>
LauCoef1L<-data.frame(Coeff="See",stringsAsFactors=FALSE)</pre>
BetasTodoL<-data.frame(Features="Name",Coefficients=1)</pre>
##### End Block 1
##### Begin Block 2
for (i in 1:n){
  smp_size = floor(0.75 * nrow(All2))
  train_ind <- caret::createDataPartition(All2$Label, p = 0.75, list = FALSE, times = 1)</pre>
  #Training set
  train = All2[train_ind, ]
  #Test set
  test = All2[-train_ind, ]
  #Creates matrices for independent and dependent variables.
  xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
  ytrain = train$Label
```

```
xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
ytest = test$Label
#Choose lambda value that minimize missclassification error.
#0.5 as elastic nets, all variables with EN are based on ElasticNets analysis. 100 lambdas sampled wi
CVEN=cv.glmnet(xtrain,ytrain,family="binomial",type.measure="class",alpha=0.5,nlambda=100)
attach(CVEN)
Lambda.BestEN<-CVEN$lambda.min #can be either minimum or 1 standard deviation
print(Lambda.BestEN)
CVFinEN=glmnet(xtrain,ytrain,family="binomial",alpha=0.5,lambda=Lambda.BestEN)
CoefEN<-coef(CVFinEN) #Beta coefficients obtained from here
InterceptEN<-CoefEN@x[1]</pre>
BetasEN<-CVFinEN$beta
Betas2EN<-data.frame(Features=BetasEN@Dimnames[[1]][BetasEN@i+1], Coefficients=BetasEN@x) #Beta coeff
CVPred1EN = predict(CVFinEN, family="binomial", s=Lambda.BestEN, newx = xtest,type="class") #predict
#Calculate error for categorical values
ytest2<-as.factor(ytest)</pre>
ResultsEN<-table(CVPred1EN,ytest)</pre>
confusionMatrix(as.factor(CVPred1EN),ytest)
AccuracyEN<-(ResultsEN[1]+ResultsEN[4])/sum(ResultsEN[1:4])
ErrorEN<-1-AccuracyEN
LauCoef <- Betas 2EN $Coefficients
LauCoefEN<-data.frame(Coeff=LauCoef,stringsAsFactors=FALSE)</pre>
LauCoef1<-rbind(LauCoef1,LauCoefEN)
BetasTodo<-rbind(BetasTodo,Betas2EN) #store coefficients and store betas
seeEN<-Betas2EN$Features</pre>
seeEN1<-data.frame(All=seeEN)</pre>
see2EN<-rbind(see2EN,seeEN1) #all beta names stored</pre>
mEN<-count(see2EN, All) #frequency of the betas stored counted
see3EN<-toString(seeEN)</pre>
ErrorsFinEN[i] <- ErrorEN #error of the model stored</pre>
BetasFinEN[i] <- see3EN #name of features the model used</pre>
BNumFinEN[i]<-length(seeEN) #number of features the model used</pre>
LambdaFinEN[i] <- Lambda.BestEN #lambda chosen for model
detach(CVEN)
#Change between Lasso and EN, alpha=1 (*)
CV=cv.glmnet(xtrain,ytrain,family="binomial",type.measure="class",alpha=1,nlambda=100)
attach(CV)
Lambda.Best<-CV$lambda.min
CVFin=glmnet(xtrain,ytrain,family="binomial",alpha=1,lambda=Lambda.Best)
Coef<-coef(CVFin)
Intercept<-Coef@x[1]</pre>
Betas<-CVFin$beta
```

```
Betas2<-data.frame(Features=Betas@Dimnames[[1]][Betas@i+1], Coefficients=Betas@x)
CVPred1 = predict(CVFin, family="binomial", s=Lambda.Best, newx = xtest,type="class")</pre>
```

```
#Calculate error for categorical values
ytest2<-as.factor(ytest)
confusionMatrix(as.factor(CVPred1),ytest)
Results<-table(CVPred1,ytest)
Accuracy<-(Results[1]+Results[4])/sum(Results[1:4])
Error<-1-Accuracy</pre>
```

#visual display of for

```
BetasTodoL<-rbind(BetasTodoL,Betas2)
see<-Betas2$Features
see1<-data.frame(All=see)
see2<-rbind(see2,see1)
m<-count(see2, All)</pre>
```

```
see3<-toString(see)
ListError[i]<-Error
BetasFin[i]<-see3
BNumFin[i]<-length(see)
LambdaFin[i]<-Lambda.Best
detach(CV)</pre>
```

```
}
```

```
## [1] 0.6689277
## [1] 0.6303686
## [1] 0.7294298
## [1] 0.2883708
## [1] 0.4733006
## [1] 0.5943159
## [1] 0.235993
## [1] 0.6584265
## [1] 0.1317309
## [1] 0.395802
## [1] 0.6748829
## [1] 0.6907273
## [1] 0.4808845
## [1] 0.2339522
## [1] 0.6926208
## [1] 0.4017377
## [1] 0.6815938
## [1] 0.3682275
## [1] 0.6878564
## [1] 0.5334466
## [1] 0.25522
## [1] 0.7062928
## [1] 0.5021274
## [1] 0.2454332
## [1] 0.3415769
## [1] 0.1445318
```

##	[1]	0.2492792
##	[1]	0.7286193
##	[1]	0.4040431
##	[1]	0.5608647
##	[1]	0.4575239
##	[1]	0.639378
##	[1]	0.1181126
##	[1]	0.194737
##	[1]	0.1059382
##	[1]	0.4479945
##	[1]	0.3634272
##	[1]	0.4787447
##	[1]	0.5555517
##	[1]	0.5364108
##	[1]	0.1343051
##	[1]	0.4800724
##	[1]	0.3865033
##	[1]	0.6247686
##	[1]	0.2318932
##	[1]	0.1884252
##	[1]	0.6696531
##	[1]	0.5132077
##	[1]	0.502099
##	[1]	0.629618
##	[1]	0.06499661
##	[1]	0.6696552
##	[1]	0.3857286
##	[1]	0.2742923
##	[1]	0.2977953
##	[1]	0.607225
##	[1]	0.2129634
##	[1]	0.4963329
##	[1]	0.4782131
##	[1]	0.2843202
##	[1]	0.3724457
##	[1]	0.4973665
##	[1]	0.6293572
##	[1]	0.251071
##	[1]	0.7596586
##	[1]	0.4509715
##		0.4194573
##		0.2410539
## ##		0.6456791
## ##		0.7355681
## ##		0.031905
## ##	L⊥J [1]	0.09030
π# ##	∟⊥」 [1]	0 4760281
##	[1]	0.642023
##	[1]	0.36937
 ##	[1]	0.4357793
##	[1]	0.2766556
##	[1]	0.5132012
##	[1]	0.1636617

[1] 0.7393992 ## [1] 0.4958403 ## [1] 0.172681 ## [1] 0.6463179 ## [1] 0.5903157 ## [1] 0.393137 ## [1] 0.7239418 ## [1] 0.3621122 ## [1] 0.6498011 ## [1] 0.2339883 ## [1] 0.5483706 ## [1] 0.2081683 ## [1] 0.5177668 ## [1] 0.6192567 ## [1] 0.609796 ## [1] 0.2968183 ## [1] 0.6362316 ## [1] 0.4532429 ## [1] 0.6682868 ## [1] 0.4565895

#Visualizing data from LASSO and EN ####

#obtain in a data frame all error, betas names, number and lamda for the N models for each lasso and EN
All_info<-data.frame(Error=ListError, BetasNames=BetasFin, BetasNum=BNumFin, Lambda=LambdaFin)
All_infoEN<-data.frame(Error=ErrorsFinEN, BetasNames=BetasFinEN, BetasNum=BNumFinEN, Lambda=LambdaFinEN</pre>

m<-m[-1,] mEN<-mEN[-1,]

Final_LASSO<-m[order(-m\$n),] #order highest frequencies above and filter with those that appear more th
Final_LASSO1<-filter(Final_LASSO,n>40) #threshold selected - 80%

Final_EN<-mEN[order(-mEN\$n),]
Final_EN1<-filter(Final_EN,n>40)
Final_Plot_Names<-filter(Final_EN,n>40)

outputVenn2<-venn(list(EN= Final_EN\$All, LASSO = Final_LASSO\$All))</pre>

outputVenn<-venn(list(EN= Final_EN1\$All, LASSO = Final_LASSO1\$All))</pre>

Freqs<-m[order(-m\$n),]
num<-length(Freqs\$All)</pre>

Freqs\$All <- factor(Freqs\$All, levels = Freqs\$All[order(-Freqs\$n)]) #plot in a bar graph the frequencie
ggplot(Freqs, aes(All, n))+geom_bar(stat="identity")+theme(axis.text.x = element_text(size=8, angle=90)</pre>


```
FreqsEN$All <- factor(FreqsEN$All, levels = FreqsEN$All[order(-FreqsEN$n)])
ggplot(FreqsEN, aes(All, n))+geom_bar(stat="identity")+theme(axis.text.x = element_text(size=8, angle=9)</pre>
```


#plot of how many times each feature appears. Most important will appear in all models = N.

#Boxplot with Betas and its coefficients

Boxplot1<-BetasTodo[BetasTodo\$Features %in% Final_EN1\$All,] #see which features appear in the filtered ggplot(Boxplot1,aes(Boxplot1\$Features,Boxplot1\$Coefficients))+geom_boxplot()+geom_jitter()

Boxplot1["Method"] <-as.factor("EN")</pre>

Boxplot2<-BetasTodoL[BetasTodoL\$Features %in% Final_LASS01\$All,]
ggplot(Boxplot2,aes(Boxplot2\$Features,Boxplot2\$Coefficients))+geom_boxplot()+geom_jitter()</pre>

Boxplot2["Method"] <-as.factor("LASSO")</pre>

Fin_Boxplot<-rbind(Boxplot1,Boxplot2) #Unite both boxplots LASSO and EN
ggplot(Fin_Boxplot,aes(Fin_Boxplot\$Features,Fin_Boxplot\$Coefficients))+geom_boxplot(aes(color=Method))+</pre>

Beta coefficients EN and LASSO


```
# Test set
test<-Betas_select[-train_ind, ]</pre>
xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
ytrain<-train$Label
ytest <- test $Label
xtest<-data.frame(xtest)</pre>
xtrain<-data.frame(xtrain)</pre>
y<-Betas_select[,NumVar]</pre>
X<-Betas_select[,1:(NumVar-1)]
levels(ytrain)[1]<-"0"</pre>
levels(ytrain)[2]<-"1"</pre>
levels(ytest)[1]<-"0"</pre>
levels(ytest)[2]<-"1"</pre>
for (k in 1:nn){
  columns<-c(1:dim(xtrain)[2])</pre>
  columns<-sample(columns)</pre>
  d<-xtrain[,columns]
  for (i in 1:dim(xtrain)[2]){
    for (j in 1:dim(xtrain)[2]){
      yy3<-data.frame(Outcome=ytrain,d[i:j])</pre>
      model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))</pre>
      dd<-xtest[,columns]
      new3<-data.frame(dd[i:j])</pre>
      p3<-predict(model3,new3,type="response")</pre>
      new5<-data.frame(Outcome=ytest)</pre>
      pr3 <- prediction(p3, new5)</pre>
      prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
      auc3 <- performance(pr3, measure = "auc")</pre>
      auc3 <- auc3@y.values[[1]]</pre>
      result2<-auc3
      if (auc3>auc3max){
        if (i>j){
           maxComb<-data.frame(Name=toString(names(d)[j:i]),AUC=auc3)</pre>
           auc3max<-auc3
           cont<-cont+1
        }
        else{
           maxComb<-data.frame(Name=toString(names(d)[i:j]),AUC=auc3)</pre>
           auc3max<-auc3
           cont<-cont+1
        }
      }
```

```
else{
           cont2<-cont2+1
         }
      }
    }
  }
  maxCombF<-rbind(maxCombF,maxComb)</pre>
  auc3max<-0
}
maxCombF2<-maxCombF[order(maxCombF$AUC),]</pre>
names<-maxCombF2$Name[dim(maxCombF2)[1]]</pre>
names1<-as.character(names)</pre>
names1<-strsplit(names1,", ")</pre>
names<-as.data.frame(names1)</pre>
Betas_select2<-All2[,colnames(All2[,intersect(gsub("`", "", names[,1]), colnames(All2))])]</pre>
Betas_select2["Label"]<-savee</pre>
Betas_select2<-as.data.frame(Betas_select2)</pre>
##### End Block 3
##### Begin Block 4
```

#Random mix between variables and AUC value obtained through GLM model, rough approximation of future p
#Betas_select2, final features selected.

```
NumVar<-length(Betas_select2)</pre>
```

N<-1000 #number of models produced (both permuted (random) and real) – for all univariate (Each featur #Real program runs with 1000 – Takes 12 hours.

```
multipleAUC<-matrix(rnorm(2),1,N)
multipleAUCR<-matrix(rnorm(2),1,N)
multipleAUCNB<-matrix(rnorm(2),1,N)
multipleAUCNBR<-matrix(rnorm(2),1,N)</pre>
```

```
multipleROC<-matrix(as.list(rnorm(2)),1,N)
multipleROCR<-matrix(as.list(rnorm(2)),1,N)
multipleNBROC<-matrix(as.list(rnorm(2)),1,N)
multipleNBROCR<-matrix(as.list(rnorm(2)),1,N)</pre>
```

```
singleROC<-list()
doubleROC<-list()
singleROCR<-list()
doubleROCR<-list()</pre>
```

doublePlus<-list()
singlePlus<-list()</pre>

```
singleAUC<-matrix(rnorm(2),NumVar-1,N)</pre>
doubleAUC<-matrix(rnorm(2),(NumVar-1),N)</pre>
singleAUCR<-matrix(rnorm(2),NumVar-1,N)</pre>
doubleAUCR<-matrix(rnorm(2), (NumVar-1),N)</pre>
doubleAUCSVMR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCSVM<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCSVMCrossR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCSVMCross<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCRFCross<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCRFCrossR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCNBR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCNB<-matrix(rnorm(2),(NumVar-1),N)</pre>
MatsingleROC<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatsingleROCR<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatdoubleROC<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
MatdoubleROCR<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
MatsinglePlus<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatdoublePlus<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
MatsinglePlusR<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatdoublePlusR<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
##### End Block 4
##### Begin Block 5
for (j in 1:N){ #N different measurements of AUC values, mean done at the end.
  smp_size<-floor(0.65 * nrow(Betas_select2))</pre>
  train_ind <- caret::createDataPartition(All2$Label, p = 0.65, list = FALSE, times = 1)</pre>
  # Training set
  train<-Betas_select2[train_ind, ]</pre>
  # Test set
  test<-Betas_select2[-train_ind, ]</pre>
  xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
  xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
  ytrain<-train$Label</pre>
  ytest<-test$Label
  xtest<-data.frame(xtest)</pre>
  xtrain<-data.frame(xtrain)</pre>
  y<-Betas_select2[,NumVar]</pre>
  X<-Betas_select2[,1:(NumVar-1)]</pre>
  levels(ytrain)[1]<-"0"</pre>
```

```
levels(ytrain)[2]<-"1"
levels(ytest)[1]<-"0"
levels(ytest)[2]<-"1"</pre>
```

source('AUCFun29-3.R')

```
## multiple, good
multipleAUCNB[1,j]<-multipleAUCfunNB(xtrain, ytrain,xtest,ytest)
multipleAUC[1,j]<-multipleAUCfun(xtrain, ytrain,xtest,ytest)</pre>
```

```
multipleNBROC[[j]]<-multipleROCfunNB(xtrain, ytrain,xtest,ytest)
multipleROC[[j]]<-multipleROCfun(xtrain, ytrain,xtest,ytest)</pre>
```

separate

```
## single, should be good
for (s in (1:(NumVar-1))){
    s<-as.numeric(s)
    singleAUC[s,j]<-singleAUCfun(xtrain, ytrain,xtest,ytest,s)
    singleROC[[s]]<-singleROCfun(xtrain, ytrain,xtest,ytest,s)
    MatsinglePlus[s,j]<-singlePlusfun(xtrain, ytrain,xtest,ytest,s)
}
</pre>
```

```
MatsingleROC[,j]<-matrix(singleROC)</pre>
```

Training set

train\$Label<-sample(train\$Label)
test\$Label<-sample(test\$Label)
#Permuted data, will make sure that are models are really valid as randomizing the label should yield</pre>

Test set

```
xtrain <- train[, !(names(train) %in% "Label")] %>% as.matrix()
xtest <- test[, !(names(test) %in% "Label")] %>% as.matrix()
ytrain<-train$Label
ytest<-test$Label
xtest<-data.frame(xtest)
xtrain<-data.frame(xtrain)
y<-Betas_select2[,NumVar]</pre>
```

```
X<-Betas_select2[,1:(NumVar-1)]</pre>
```

```
levels(ytrain)[1]<-"0"</pre>
  levels(ytrain)[2]<-"1"</pre>
  levels(ytest)[1]<-"0"</pre>
  levels(ytest)[2]<-"1"</pre>
  multipleAUCNBR[1,j]<-multipleAUCfunNB(xtrain, ytrain, xtest, ytest)</pre>
  multipleAUCR[1,j]<-multipleAUCfun(xtrain, ytrain,xtest,ytest)</pre>
  multipleNBROCR[[j]]<-multipleROCfunNB(xtrain, ytrain, xtest, ytest)</pre>
  multipleROCR[[j]]<-multipleROCfun(xtrain, ytrain, xtest, ytest)</pre>
  for (s in (1:(NumVar-1))){
    s<-as.numeric(s)</pre>
    singleAUCR[s,j]<-singleAUCfun(xtrain, ytrain,xtest,ytest,s)</pre>
    singleROCR[[s]]<-singleROCfun(xtrain, ytrain, xtest, ytest, s)</pre>
    MatsinglePlusR[s,j]<-singlePlusfun(xtrain, ytrain,xtest,ytest,s)</pre>
  }
  MatsingleROCR[,j]<-matrix(singleROCR)</pre>
  #
}
##### End Block 5
##### Begin Block 6
  names2<-sapply(1:(NumVar-1), function(i){paste0("NISS/",names(xtrain)[i])})</pre>
trial<-NULL
h=1
for (b in (2:NumVar-1)) {
  print(b)
  trial[b] <-names2[h]</pre>
  h=h+1
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
```

```
23
```

```
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
singleAUC<-as.data.frame(singleAUC)</pre>
singleAUC<-mutate(singleAUC, Means=rowMeans(singleAUC))</pre>
row.names(singleAUC)<-names(xtrain)</pre>
singleAUCR<-as.data.frame(singleAUCR)</pre>
singleAUCR<-mutate(singleAUCR, Means=rowMeans(singleAUCR))</pre>
row.names(singleAUCR)<-names(xtrain)</pre>
multipleAUCNBR<-as.data.frame(multipleAUCNBR)</pre>
multipleAUCNBR["Means"] <- rowMeans(multipleAUCNBR)</pre>
multipleAUCR<-as.data.frame(multipleAUCR)</pre>
multipleAUCR["Means"] <- rowMeans(as.data.frame(multipleAUCR))</pre>
multipleAUCNB<-as.data.frame(multipleAUCNB)</pre>
```

```
multipleAUCNB["Means"]<-rowMeans(as.data.frame(multipleAUCNB))
multipleAUC<-as.data.frame(multipleAUC)
multipleAUC["Means"]<-rowMeans(as.data.frame(multipleAUC))</pre>
```

Final<-data.frame(MultiNB=t(multipleAUCNB),MultiNBRand=t(multipleAUCNBR),Multi=t(multipleAUC),MultiRand FinalMeans<-data.frame(MultiNB=multipleAUCNB\$Means,MultiNBRand=multipleAUCNBR\$Means,Multi=multipleAUC\$M</pre>

```
#sacar ROC CURVES #####
```

```
print("here")
## [1] "here"
for (g in 1:(NumVar-1)){
    plot(MatsingleROC[[g,1]],lwd=3,main=paste("ROC curve of", names(xtrain)[g]))
    for (b in 1:N){
        plot(MatsingleROCR[[g,b]],col=b,lty=3,add=TRUE)
    }
}
```

ROC curve of GPRC5A

ROC curve of CAPG

ROC curve of INHBA

ROC curve of COL8A1

ROC curve of RASAL2

ROC curve of SLPI

ROC curve of ADAMTS12

ROC curve of THBS2

ROC curve of VCAN

ROC curve of LTBP1

ROC curve of AEBP1

ROC curve of MIR34AHG

ROC curve of KRT7


```
plot(multipleROC[[1]],lwd=3,main=paste("ROC curve of", trial[1]))
for (b in 1:N){
    plot(multipleNBROCR[[b]],col=b,lty=3,add=TRUE)
}
```

ROC curve of NISS/GPRC5A

z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

range : 4 grobs	(2) ar	LeGrob (2 2		Ιċ	##
grob	name	cells	z		##
<pre>gtable[layout]</pre>	arrange	(1-1,1-1)	1	1	##
<pre>gtable[layout]</pre>	arrange	(1-1,2-2)	2	2	##
<pre>gtable[layout]</pre>	arrange	(2-2,1-1)	3	3	##
gtable[layout]	arrange	(2-2, 2-2)	4	4	##

##	Τa	ab]	LeGrob (2 :	x 2) "arı	range": 4 grobs
##		z	cells	name	grob
##	1	1	(1-1,1-1)	arrange	gtable[layout]
##	2	2	(1-1,2-2)	arrange	gtable[layout]
##	3	3	(2-2,1-1)	arrange	gtable[layout]
##	4	4	(2-2, 2-2)	arrange	gtable[layout]

TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

##	Τa	abl	LeGrob (2 :	x 2) "arı	range": 4 grobs
##		z	cells	name	grob
##	1	1	(1-1,1-1)	arrange	gtable[layout]
##	2	2	(1-1,2-2)	arrange	gtable[layout]
##	3	3	(2-2,1-1)	arrange	gtable[layout]
##	4	4	(2-2, 2-2)	arrange	gtable[layout]

TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

##	15	abl	LeGrob (2 :	x 2) "arı	cange": 4 grobs
##		z	cells	name	grob
##	1	1	(1-1,1-1)	arrange	gtable[layout]
##	2	2	(1-1,2-2)	arrange	<pre>gtable[layout]</pre>
##	3	3	(2-2,1-1)	arrange	gtable[layout]
##	4	4	(2-2, 2-2)	arrange	gtable[layout]

TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

			100100 (1 1	. 2) ari	
##		z	cells	name	grob
##	1	1	(1-1,1-1)	arrange	gtable[layout]
##	2	2	(1-1,2-2)	arrange	gtable[layout]
##	3	3	(2-2,1-1)	arrange	<pre>gtable[layout]</pre>
##	4	4	(2-2, 2-2)	arrange	gtable[layout]

Mono<-rbind(MA,MAR)

pp<-ggdensity(Mono, x = "Mono", fill = "Label", palette = "jco")+geom_vline(xintercept=Meanq[1,1],linet print(pp+geom_vline(xintercept=Meanq[1,2],linetype = 2,color="black",show.legend = TRUE))


```
## NOX4
## THBS2
## ADAMTS12
## RASAL2
## CAPG
## FAP
## CTHRC1
## VCAN
## WISP1
## TIMP1
## LTBP1
## SLPI
## GPRC5A
## MIR34AHG
## AEBP1
## KRT7
cat("Beta_Select_Threshold")
## Beta_Select_Threshold
cat("\n")
cat(genes_to_networkStrict, sep = "\n")
## GPRC5A
## CAPG
## INHBA
## COL8A1
## SULF1
## RASAL2
## SLPI
## ADAMTS12
## THBS2
## VCAN
## LTBP1
## AEBP1
## MIR34AHG
## KRT7
sink()
```