AML Cancer Analysis

Bravo, Williams, and Acharjee 19 Sept 2018

#Libraries

Begin Block 1

```
setwd("~/AnimeshReview/LauraPaper/Journal of Translational Medicine /LauraFinal/")
library(readxl)
library(data.table)
library(tidyverse)
library(dplyr)
library(devtools)
library(ggcorrplot)
library(car)
library(ggpubr)
library(glmnet)
library(summarytools)
library(knitr)
library(htmltools)
library(corrplot)
library(caret)
library(factoextra)
library(Metrics)
library(readr)
library(gplots)
library(dplyr)
library(stringr)
library(readxl)
library(plotly)
library(e1071)
library(ggplot2)
library(reshape2)
library(multtest)
library(ROCR)
library(gridExtra)
library(MLmetrics)
#### Begin Load Laura's Functions
doubleAUCfun <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
```

```
prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
doubleAUCfunNB <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model4<-naiveBayes(Outcome~Predictor+Predictor2,data=yy3)</pre>
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p4<-predict(model4,new4,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
    }
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
doubleAUCfunRFCross <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    control <- trainControl(method="repeatedcv", number=10, repeats=3) #Is this the only thing needed f
    seed <- 7
    metric <- "Accuracy"</pre>
    set.seed(seed)
    #mtry <- 2
    tunegrid <- expand.grid(.mtry=c(1:6))</pre>
    set.seed(seed)
    rf_default <- train(Outcome~Predictor+Predictor2,data=yy3, method="rf", metric=metric, tuneGrid=tun
    #print(rf_default)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    pred=predict(rf_default, new4,type="prob")
    pred2=predict(rf_default, new4)
    prob2<-NULL
    for (i in 1:dim(pred)[1]){
        prob2[i] <-pred[i,2]/pred[i,1]</pred[i,1]
    }
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
```

```
2
```

```
doubleAUCfunSVM <- function(xtrain, ytrain,xtest,ytest,s,k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    seed <-7
    set.seed(seed)
    model3<-svm(Outcome~Predictor+Predictor2,data=yy3)</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,decision.values = TRUE)
    p4<-attr(p3,"decision.values")
    new5<-data.frame(Outcome=ytest)</pre>
    pr3<- prediction(p4, new5)</pre>
    #table(p3, new5)
    #confusionMatrix(p3, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
}
doubleAUCfunSVMCross <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    seed <- 7
    set.seed(seed)
    model4<-svm(Outcome~Predictor+Predictor2,data=yy3,method="C-classification",</pre>
                 kernel="radial", gamma = 0.01, cost = 100, cross=10, probability=TRUE)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p4<-predict(model4,new4,decision.values = TRUE)</pre>
    p5<-attr(p4,"decision.values")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p5, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc30y.values[[1]]</pre>
    result2<-auc3
}
doublePlusfun <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr <- prediction(p3, new5)</pre>
    Acc <- performance(pr, measure="acc")</pre>
    AccV<-Acc@y.values[[1]] [max(which(Acc@x.values[[1]] >= 0.5))]
    Sens <- performance(pr, measure= "sens")</pre>
    SensV<-Sens@y.values[[1]][max(which(Sens@x.values[[1]] >= 0.5))]
    Spec <- performance(pr, measure= "spec")</pre>
    SpecV<-Spec@y.values[[1]][max(which(Spec@x.values[[1]] >= 0.5))]
    Prec <- performance(pr, measure= "prec")</pre>
    PrecV<-Prec@y.values[[1]][max(which(Prec@x.values[[1]] >= 0.5))]
```

```
AllV<-data.frame(Vector=c(AccV, SensV, SpecV, PrecV))</pre>
    return(AllV)
}
doubleROCfun <- function(xtrain, ytrain, xtest, ytest, s, k) {</pre>
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    result<-prf3
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    return(result)
}
MeansNames <- function(doubleAUCR,trial){</pre>
    doubleAUCR<-as.data.frame(doubleAUCR)</pre>
    doubleAUCR<-mutate(doubleAUCR, Means=rowMeans(doubleAUCR))</pre>
    row.names(doubleAUCR)<-trial</pre>
    return(doubleAUCR)
}
multipleAUCfun <- function(xtrain,ytrain,xtest,ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(xtest)</pre>
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(result2)
}
multipleAUCfunNB <- function(xtrain, ytrain, xtest, ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model4<-naiveBayes(Outcome~.,data=yy3)</pre>
    new3<-data.frame(xtest)</pre>
    p4<-predict(model4,new3,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
```

```
}
    new5<-data.frame(Outcome=vtest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(result2)
}
multipleROCfun <- function(xtrain,ytrain,xtest,ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))</pre>
    new3<-data.frame(xtest)
    p3<-predict(model3,new3,type="response")</pre>
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(p3, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(prf3)
}
multipleROCfunNB <- function(xtrain, ytrain, xtest, ytest) {</pre>
    yy3<-data.frame(Outcome=ytrain,xtrain)</pre>
    model4<-naiveBayes(Outcome~.,data=yy3)</pre>
    new3<-data.frame(xtest)
    p4<-predict(model4,new3,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
    }
    new5<-data.frame(Outcome=ytest)</pre>
    pr3 <- prediction(prob2, new5)</pre>
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
    auc3 <- performance(pr3, measure = "auc")</pre>
    auc3 <- auc3@y.values[[1]]</pre>
    result2<-auc3
    return(prf3)
}
singleAUCfun <- function(xtrain, ytrain, xtest, ytest, s) {</pre>
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])</pre>
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))</pre>
    new2<-data.frame(Predictor=xtest[,s])</pre>
    p<-predict(model2,new2,type = "response")</pre>
    new4<-data.frame(Outcome=ytest)</pre>
```

```
pr <- prediction(p, new4)</pre>
    prf <- performance(pr, measure = "tpr", x.measure = "fpr")</pre>
    auc <- performance(pr, measure = "auc")</pre>
    auc <- auc@y.values[[1]]</pre>
    return(auc)
}
singlePlusfun <- function(xtrain, ytrain, xtest, ytest, s) {</pre>
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])</pre>
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))</pre>
    new2<-data.frame(Predictor=xtest[,s])</pre>
    p<-predict(model2,new2,type = "response")</pre>
    new4<-data.frame(Outcome=ytest)</pre>
    pr <- prediction(p, new4)</pre>
    Acc <- performance(pr, measure="acc")</pre>
    AccV<-Acc<sup>0</sup>y.values[[1]][max(which(Acc<sup>0</sup>x.values[[1]] >= 0.5))]
    Sens <- performance(pr, measure= "sens")</pre>
    SensV<-Sens@y.values[[1]] [max(which(Sens@x.values[[1]] >= 0.5))]
    Spec <- performance(pr, measure= "spec")</pre>
    SpecV<-Spec@y.values[[1]] [max(which(Spec@x.values[[1]] >= 0.5))]
    Prec <- performance(pr, measure= "prec")</pre>
    PrecV<-Prec@y.values[[1]] [max(which(Prec@x.values[[1]] >= 0.5))]
    AllV<-data.frame(Vector=c(AccV, SensV, SpecV, PrecV))</pre>
    return(AllV)
}
singleROCfun <- function(xtrain, ytrain, xtest, ytest, s) {</pre>
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])</pre>
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))</pre>
    new2<-data.frame(Predictor=xtest[,s])</pre>
    p<-predict(model2,new2,type = "response")</pre>
    new4<-data.frame(Outcome=ytest)</pre>
    pr <- prediction(p, new4)</pre>
    prf <- performance(pr, measure = "tpr", x.measure = "fpr")</pre>
    resultU2<-prf
    tomeany<-as.data.frame(prf@y.values)</pre>
    tomeanx<-as.data.frame(prf@x.values)</pre>
    auc <- performance(pr, measure = "auc")</pre>
    auc <- auc@y.values[[1]]</pre>
    return(resultU2)
}
```

set.seed(132)

```
### Load AML Data
setwd("/Users/j.williams/AnimeshReview/LauraPaper/Journal of Translational Medicine /LauraFinal/Sept18_
All2 <- readRDS("All2.AML.rds"); savee <- readRDS("savee.AML.rds")</pre>
#TRAIN
### set n to 10 for now to make quicker
n<-100 #Number of LASSO and EN loops. Per loop a model with features selected. The 80% most popular fea
#N and nn control the number of models created for combinatorial analysis to help in further feature se
N < -10
nn <-25
ErrorsFinEN<-vector(mode="double", length=n)</pre>
BetasFinEN<-vector(mode="character", length=n)</pre>
LambdaFinEN<-vector(mode="double", length=n)</pre>
BNumFinEN<-vector(mode="double", length=n)</pre>
see2EN<-data.frame(All="All")</pre>
LauCoef1<-data.frame(Coeff="See",stringsAsFactors=FALSE)</pre>
BetasTodo<-data.frame(Features="Name",Coefficients=1)</pre>
ListError<-vector(mode="double", length=n)</pre>
BetasFin<-vector(mode="character", length=n)</pre>
LambdaFin<-vector(mode="double", length=n)</pre>
BNumFin<-vector(mode="double", length=n)</pre>
see2<-data.frame(All="All")</pre>
LauCoef1L<-data.frame(Coeff="See",stringsAsFactors=FALSE)</pre>
BetasTodoL<-data.frame(Features="Name",Coefficients=1)</pre>
##### End Block 1
##### Begin Block 2
for (i in 1:n){
  smp_size = floor(0.75 * nrow(All2))
  train_ind <- caret::createDataPartition(All2$Label, p = 0.75, list = FALSE, times = 1)</pre>
  train = All2[train_ind, ]
  #Test set
  test = All2[-train_ind, ]
  #Creates matrices for independent and dependent variables.
  xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
  ytrain = train$Label
  xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
```

```
7
```

```
ytest = test$Label
```

```
#Choose lambda value that minimize missclassification error.
#0.5 as elastic nets, all variables with EN are based on ElasticNets analysis. 100 lambdas sampled wi
CVEN=cv.glmnet(xtrain,ytrain,family="binomial",type.measure="class",alpha=0.5,nlambda=100)
attach(CVEN)
Lambda.BestEN<-CVEN$lambda.min #can be either minimum or 1 standard deviation
print(Lambda.BestEN)
```

```
CVFinEN=glmnet(xtrain,ytrain,family="binomial",alpha=0.5,lambda=Lambda.BestEN)
CoefEN<-coef(CVFinEN) #Beta coefficients obtained from here
InterceptEN<-CoefEN@x[1]
BetasEN<-CVFinEN$beta
Betas2EN<-data.frame(Features=BetasEN@Dimnames[[1]][BetasEN@i+1], Coefficients=BetasEN@x) #Beta coeff
CVPred1EN = predict(CVFinEN, family="binomial", s=Lambda.BestEN, newx = xtest,type="class") #predict
```

```
#Calculate error for categorical values
ytest2<-as.factor(ytest)
ResultsEN<-table(CVPred1EN,ytest)
confusionMatrix(as.factor(CVPred1EN),ytest)
AccuracyEN<-(ResultsEN[1]+ResultsEN[4])/sum(ResultsEN[1:4])
ErrorEN<-1-AccuracyEN</pre>
```

```
LauCoef<-Betas2EN$Coefficients
LauCoefEN<-data.frame(Coeff=LauCoef,stringsAsFactors=FALSE)
LauCoef1<-rbind(LauCoef1,LauCoefEN)
BetasTodo<-rbind(BetasTodo,Betas2EN) #store coefficients and store betas
```

```
seeEN<-Betas2EN$Features
seeEN1<-data.frame(All=seeEN)
see2EN<-rbind(see2EN,seeEN1) #all beta names stored</pre>
```

```
mEN<-count(see2EN, All) #frequency of the betas stored counted
see3EN<-toString(seeEN)
ErrorsFinEN[i]<-ErrorEN #error of the model stored
BetasFinEN[i]<-see3EN #name of features the model used
BNumFinEN[i]<-length(seeEN) #number of features the model used
LambdaFinEN[i]<-Lambda.BestEN #lambda chosen for model
detach(CVEN)
```

```
#Change between Lasso and EN, alpha=1 (*)
CV=cv.glmnet(xtrain,ytrain,family="binomial",type.measure="class",alpha=1,nlambda=100)
```

attach(CV)

```
Lambda.Best<-CV$lambda.min
CVFin=glmnet(xtrain,ytrain,family="binomial",alpha=1,lambda=Lambda.Best)
Coef<-coef(CVFin)
Intercept<-Coef@x[1]
Betas<-CVFin$beta
Betas2<-data.frame(Features=Betas@Dimnames[[1]][Betas@i+1], Coefficients=Betas@x)</pre>
```

CVPred1 = predict(CVFin, family="binomial", s=Lambda.Best, newx = xtest,type="class")

```
#Calculate error for categorical values
ytest2<-as.factor(ytest)
confusionMatrix(as.factor(CVPred1),ytest)
Results<-table(CVPred1,ytest)
Accuracy<-(Results[1]+Results[4])/sum(Results[1:4])
Error<-1-Accuracy</pre>
```

#visual display of for

```
BetasTodoL<-rbind(BetasTodoL,Betas2)
see<-Betas2$Features
see1<-data.frame(All=see)
see2<-rbind(see2,see1)
m<-count(see2, All)</pre>
```

```
see3<-toString(see)
ListError[i]<-Error
BetasFin[i]<-see3
BNumFin[i]<-length(see)
LambdaFin[i]<-Lambda.Best
detach(CV)</pre>
```

}

```
## [1] 0.01410672
## [1] 0.06136322
## [1] 0.0572892
## [1] 0.02276051
## [1] 0.0768437
## [1] 0.01208532
## [1] 0.09287787
## [1] 0.08556725
## [1] 0.06002755
## [1] 0.0477804
## [1] 0.04394421
## [1] 0.09268814
## [1] 0.06570016
## [1] 0.03319311
## [1] 0.05911919
## [1] 0.02889832
## [1] 0.08646156
## [1] 0.008838517
## [1] 0.05092736
## [1] 0.01965162
## [1] 0.0620856
## [1] 0.09770617
## [1] 0.09408764
## [1] 0.07763139
## [1] 0.08480714
## [1] 0.0689899
## [1] 0.07218094
```

##	[1]	0 07332494
##	[1]	0.0751107
пп <u>н</u> и		0.0751107
##		0.05546047
##	[1]	0.03706898
##	[1]	0.01768615
##	[1]	0.07290411
##	[1]	0.02436325
##	[1]	0.1010492
##	[1]	0.07947772
##	[1]	0.08638957
##	Г1]	0.06704386
##	[1]	0 005414587
##		0.078/0055
## ##		0.07049000
##		0.06146099
##	[1]	0.03060099
##	[1]	0.01808845
##	[1]	0.09695372
##	[1]	0.08502742
##	[1]	0.06793977
##	[1]	0.08769333
##	[1]	0.06770055
##	[1]	0.07696627
##	[1]	0.02821053
##	[1]	0 018/01/7
##	[1]	0.01040147
## ##		0.00300520
##		0.07297679
##		0.006236947
##	[1]	0.03218741
##	[1]	0.100343
##	[1]	0.05928835
##	[1]	0.0692829
##	[1]	0.06440835
##	[1]	0.05934364
##	[1]	0.08362592
##	[1]	0.0537196
##	[1]	0.009768704
##	[1]	0 08008044
##		0.02443207
##		0.07740715
## ##		0.01070570
## ##		0.01072579
##		0.12/58/6
##	[1]	0.0206432
##	[1]	0.1033139
##	[1]	0.005817232
##	[1]	0.09127219
##	[1]	0.0771582
##	[1]	0.07655367
##	[1]	0.009287085
##	[1]	0.07404753
##	[1]	0.037219
##	[1]	0.01361882
##	[1]	0.06059189
 ##	[1]	0.01232926
π π ##	[1]	0 01396100
##	ΓŢ]	0.01000100

[1] 0.09655957 ## [1] 0.05262116 ## [1] 0.00697718 ## [1] 0.05080445 ## [1] 0.05765488 ## [1] 0.0942935 ## [1] 0.02991813 ## [1] 0.08112793 ## [1] 0.0526637 ## [1] 0.07080803 ## [1] 0.0766287 ## [1] 0.06940108 ## [1] 0.08790559 ## [1] 0.07147071 ## [1] 0.009480638 ## [1] 0.1038332 ## [1] 0.01677133 ## [1] 0.1024412 ## [1] 0.02911092

#Visualizing data from LASSO and EN ####

#obtain in a data frame all error, betas names, number and lamda for the N models for each lasso and EN
All_info<-data.frame(Error=ListError, BetasNames=BetasFin, BetasNum=BNumFin, Lambda=LambdaFin)
All_infoEN<-data.frame(Error=ErrorsFinEN, BetasNames=BetasFinEN, BetasNum=BNumFinEN, Lambda=LambdaFinEN</pre>

m<-m[-1,] mEN<-mEN[-1,]

Final_LASSO<-m[order(-m\$n),] #order highest frequencies above and filter with those that appear more th
Final_LASSO1<-filter(Final_LASSO,n>40) #threshold selected - 80%

Final_EN<-mEN[order(-mEN\$n),]
Final_EN1<-filter(Final_EN,n>40)
Final_Plot_Names<-filter(Final_EN,n>40)

outputVenn2<-venn(list(EN= Final_EN\$All, LASSO = Final_LASSO\$All))</pre>

outputVenn<-venn(list(EN= Final_EN1\$All, LASSO = Final_LASSO1\$All))</pre>

Freqs<-m[order(-m\$n),]
num<-length(Freqs\$All)</pre>

Freqs\$All <- factor(Freqs\$All, levels = Freqs\$All[order(-Freqs\$n)]) #plot in a bar graph the frequencie
ggplot(Freqs, aes(All, n))+geom_bar(stat="identity")+theme(axis.text.x = element_text(size=8, angle=90)</pre>


```
FreqsEN$All <- factor(FreqsEN$All, levels = FreqsEN$All[order(-FreqsEN$n)])
ggplot(FreqsEN, aes(All, n))+geom_bar(stat="identity")+theme(axis.text.x = element_text(size=8, angle=9)</pre>
```


#plot of how many times each feature appears. Most important will appear in all models = N.

#Boxplot with Betas and its coefficients

Boxplot1<-BetasTodo[BetasTodo\$Features %in% Final_EN1\$All,] #see which features appear in the filtered ggplot(Boxplot1,aes(Boxplot1\$Features,Boxplot1\$Coefficients))+geom_boxplot()+geom_jitter()

Boxplot1["Method"] <-as.factor("EN")</pre>

Boxplot2<-BetasTodoL[BetasTodoL\$Features %in% Final_LASS01\$All,]
ggplot(Boxplot2,aes(Boxplot2\$Features,Boxplot2\$Coefficients))+geom_boxplot()+geom_jitter()</pre>

ggplot(Fin_Boxplot,aes(Fin_Boxplot\$Features,Fin_Boxplot\$Coefficients))+geom_boxplot(aes(color=Method))+geom_boxplot(aes(c


```
# Test set
test<-Betas_select[-train_ind, ]</pre>
xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
ytrain<-train$Label
ytest <- test $Label
xtest<-data.frame(xtest)</pre>
xtrain<-data.frame(xtrain)</pre>
y<-Betas_select[,NumVar]</pre>
X<-Betas_select[,1:(NumVar-1)]
levels(ytrain)[1]<-"0"</pre>
levels(ytrain)[2]<-"1"</pre>
levels(ytest)[1]<-"0"</pre>
levels(ytest)[2]<-"1"</pre>
for (k in 1:nn){
  columns<-c(1:dim(xtrain)[2])</pre>
  columns<-sample(columns)</pre>
  d<-xtrain[,columns]
  for (i in 1:dim(xtrain)[2]){
    for (j in 1:dim(xtrain)[2]){
      yy3<-data.frame(Outcome=ytrain,d[i:j])</pre>
      model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))</pre>
      dd<-xtest[,columns]
      new3<-data.frame(dd[i:j])</pre>
      p3<-predict(model3,new3,type="response")</pre>
      new5<-data.frame(Outcome=ytest)</pre>
      pr3 <- prediction(p3, new5)</pre>
      prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")</pre>
      auc3 <- performance(pr3, measure = "auc")</pre>
      auc3 <- auc3@y.values[[1]]</pre>
      result2<-auc3
      if (auc3>auc3max){
        if (i>j){
           maxComb<-data.frame(Name=toString(names(d)[j:i]),AUC=auc3)</pre>
           auc3max<-auc3
           cont<-cont+1
        }
        else{
           maxComb<-data.frame(Name=toString(names(d)[i:j]),AUC=auc3)</pre>
           auc3max<-auc3
           cont<-cont+1
        }
      }
```

```
else{
           cont2<-cont2+1
         }
      }
    }
  }
  maxCombF<-rbind(maxCombF,maxComb)</pre>
  auc3max<-0
}
maxCombF2<-maxCombF[order(maxCombF$AUC),]</pre>
names<-maxCombF2$Name[dim(maxCombF2)[1]]</pre>
names1<-as.character(names)</pre>
names1<-strsplit(names1,", ")</pre>
names<-as.data.frame(names1)</pre>
Betas_select2<-All2[,colnames(All2[,intersect(gsub("`", "", names[,1]), colnames(All2))])]</pre>
Betas_select2["Label"]<-savee</pre>
Betas_select2<-as.data.frame(Betas_select2)</pre>
##### End Block 3
##### Begin Block 4
```

#Random mix between variables and AUC value obtained through GLM model, rough approximation of future p
#Betas_select2, final features selected.

```
NumVar<-length(Betas_select2)</pre>
```

N<-1000 #number of models produced (both permuted (random) and real) – for all univariate (Each featur #Real program runs with 1000 – Takes 12 hours.

```
multipleAUC<-matrix(rnorm(2),1,N)
multipleAUCR<-matrix(rnorm(2),1,N)
multipleAUCNB<-matrix(rnorm(2),1,N)
multipleAUCNBR<-matrix(rnorm(2),1,N)</pre>
```

```
multipleROC<-matrix(as.list(rnorm(2)),1,N)
multipleROCR<-matrix(as.list(rnorm(2)),1,N)
multipleNBROC<-matrix(as.list(rnorm(2)),1,N)
multipleNBROCR<-matrix(as.list(rnorm(2)),1,N)</pre>
```

```
singleROC<-list()
doubleROC<-list()
singleROCR<-list()
doubleROCR<-list()</pre>
```

doublePlus<-list()
singlePlus<-list()</pre>

```
singleAUC<-matrix(rnorm(2),NumVar-1,N)</pre>
doubleAUC<-matrix(rnorm(2),(NumVar-1),N)</pre>
singleAUCR<-matrix(rnorm(2),NumVar-1,N)</pre>
doubleAUCR<-matrix(rnorm(2), (NumVar-1),N)</pre>
doubleAUCSVMR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCSVM<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCSVMCrossR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCSVMCross<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCRFCross<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCRFCrossR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCNBR<-matrix(rnorm(2),(NumVar-1),N)</pre>
doubleAUCNB<-matrix(rnorm(2),(NumVar-1),N)</pre>
MatsingleROC<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatsingleROCR<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatdoubleROC<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
MatdoubleROCR<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
MatsinglePlus<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatdoublePlus<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
MatsinglePlusR<-matrix(as.list(rnorm(2)),NumVar-1,N)</pre>
MatdoublePlusR<-matrix(as.list(rnorm(2)),(NumVar-1),N)</pre>
##### End Block 4
##### Begin Block 5
for (j in 1:N){ #N different measurements of AUC values, mean done at the end.
  smp_size<-floor(0.65 * nrow(Betas_select2))</pre>
  #set.seed(907)
  train_ind <- caret::createDataPartition(All2$Label, p = 0.65, list = FALSE, times = 1)</pre>
  # Training set
  train<-Betas_select2[train_ind, ]</pre>
  # Test set
  test<-Betas_select2[-train_ind, ]</pre>
  xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
  xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
  ytrain<-train$Label
  ytest<-test$Label
  xtest<-data.frame(xtest)</pre>
  xtrain<-data.frame(xtrain)</pre>
  y<-Betas_select2[,NumVar]</pre>
  X<-Betas_select2[,1:(NumVar-1)]</pre>
```

```
levels(ytrain)[1]<-"0"
levels(ytrain)[2]<-"1"
levels(ytest)[1]<-"0"
levels(ytest)[2]<-"1"</pre>
```

```
## multiple, good
multipleAUCNB[1,j]<-multipleAUCfunNB(xtrain, ytrain,xtest,ytest)
multipleAUC[1,j]<-multipleAUCfun(xtrain, ytrain,xtest,ytest)</pre>
```

```
multipleNBROC[[j]]<-multipleROCfunNB(xtrain, ytrain,xtest,ytest)
multipleROC[[j]]<-multipleROCfun(xtrain, ytrain,xtest,ytest)</pre>
```

#separate

```
## single, should be good
for (s in (1:(NumVar-1))){
    s<-as.numeric(s)
    singleAUC[s,j]<-singleAUCfun(xtrain, ytrain,xtest,ytest,s)
    singleROC[[s]]<-singleROCfun(xtrain, ytrain,xtest,ytest,s)
    MatsinglePlus[s,j]<-singlePlusfun(xtrain, ytrain,xtest,ytest,s)
}
MatsingleROC[,j]<-matrix(singleROC)</pre>
```

```
#Null Hypothesis ####
```

Training set

```
train$Label<-sample(train$Label)
test$Label<-sample(test$Label)
#Permuted data, will make sure that are models are really valid as randomizing the label should yield</pre>
```

Test set

```
xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
```

xtest <- test[, !(names(test) %in% "Label")] %>% as.matrix()

ytrain<-train\$Label ytest<-test\$Label

xtest<-data.frame(xtest)
xtrain<-data.frame(xtrain)</pre>

```
y<-Betas_select2[,NumVar]</pre>
  X<-Betas_select2[,1:(NumVar-1)]
  levels(ytrain)[1]<-"0"</pre>
  levels(ytrain)[2]<-"1"</pre>
  levels(ytest)[1]<-"0"</pre>
  levels(ytest)[2]<-"1"</pre>
  multipleAUCNBR[1,j]<-multipleAUCfunNB(xtrain, ytrain,xtest,ytest)</pre>
  multipleAUCR[1,j]<-multipleAUCfun(xtrain, ytrain,xtest,ytest)</pre>
  multipleNBROCR[[j]]<-multipleROCfunNB(xtrain, ytrain, xtest, ytest)</pre>
  multipleROCR[[j]]<-multipleROCfun(xtrain, ytrain, xtest, ytest)</pre>
  for (s in (1:(NumVar-1))){
    s<-as.numeric(s)</pre>
    singleAUCR[s,j]<-singleAUCfun(xtrain, ytrain,xtest,ytest,s)</pre>
    singleROCR[[s]] <- singleROCfun(xtrain, ytrain, xtest, ytest, s)</pre>
    MatsinglePlusR[s,j]<-singlePlusfun(xtrain, ytrain,xtest,ytest,s)</pre>
  }
  MatsingleROCR[,j]<-matrix(singleROCR)</pre>
  #
}
##### End Block 5
##### Begin Block 6
  names2<-sapply(1:(NumVar-1), function(i){paste0("NISS/",names(xtrain)[i])})</pre>
trial<-NULL
h=1
for (b in (2:NumVar-1)) {
  print(b)
  trial[b] <-names2[h]</pre>
  h=h+1
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
```

[1] 8

```
singleAUC<-as.data.frame(singleAUC)
singleAUC<-mutate(singleAUC, Means=rowMeans(singleAUC))
row.names(singleAUC)<-names(xtrain)</pre>
```

```
singleAUCR<-as.data.frame(singleAUCR)
singleAUCR<-mutate(singleAUCR, Means=rowMeans(singleAUCR))
row.names(singleAUCR)<-names(xtrain)</pre>
```

```
multipleAUCNBR<-as.data.frame(multipleAUCNBR)
multipleAUCNBR["Means"]<-rowMeans(multipleAUCNBR)
multipleAUCR<-as.data.frame(multipleAUCR)
multipleAUCR["Means"]<-rowMeans(as.data.frame(multipleAUCR))</pre>
```

```
multipleAUCNB<-as.data.frame(multipleAUCNB)
multipleAUCNB["Means"]<-rowMeans(as.data.frame(multipleAUCNB))
multipleAUC<-as.data.frame(multipleAUC)
multipleAUC["Means"]<-rowMeans(as.data.frame(multipleAUC))</pre>
```

```
Final<-data.frame(MultiNB=t(multipleAUCNB),MultiNBRand=t(multipleAUCNBR),Multi=t(multipleAUC),MultiRand
FinalMeans<-data.frame(MultiNB=multipleAUCNB$Means,MultiNBRand=multipleAUCNBR$Means,Multi=multipleAUC$M</pre>
```

```
#sacar ROC CURVES #####
```

```
print("here")
```

}

```
## [1] "here"
for (g in 1:(NumVar-1)){
    plot(MatsingleROC[[g,1]],lwd=3,main=paste("ROC curve of", names(xtrain)[g]))
    for (b in 1:N){
        plot(MatsingleROCR[[g,b]],col=b,lty=3,add=TRUE)
    }
```

24

ROC curve of DEFT1P

ROC curve of MSRB3

ROC curve of ORM1

ROC curve of HHEX

ROC curve of AL022313.1

ROC curve of ARRDC4

ROC curve of MERTK

ROC curve of RTN2

False positive rate

plot(multipleROC[[1]],lwd=3,main=paste("ROC curve of", trial[1]))
for (b in 1:N){
 plot(multipleNBROCR[[b]],col=b,lty=3,add=TRUE)
}

ROC curve of NISS/DEFT1P

4 4 (2-2,2-2) arrange gtable[layout]

z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

47

TableGlob (2 x 2) allange . 4 globs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]


```
print(pp+geom_vline(xintercept=Meanq[1,2],linetype = 2,color="black",show.legend = TRUE))
```



```
pp<-ggdensity(Mono, x = "Mono", fill = "Label", palette = "jco")+geom_vline(xintercept=Meanq[1,1],linet
print(pp+geom_vline(xintercept=Meanq[1,2],linetype = 2,color="black",show.legend = TRUE))
```



```
## HOXA9
```

##	KLF10		
##	SOX4		
##	BMP1		
##	TRIO		
##	SOCS5		
##	MAP3K7CL		
##	MAPK12		
##	DEFT1P		
##	CD8B2		
##	FSCN1		
##	DNAH10		
##	CYP4F3		
##	HOXA10		
##	EEF1A1		
##	C6orf48		
##	PNKD		
##	SLC17A9		
##	ORM1		
##	MARK4		
##	MMP9		
##	ASPH		
##	GAS5		
##	OLFM4		
##	VPREB3		
##	IL7R		
##	NETO2		
##	C5		
##	UBE2E2		
##	TUBB1		
##	MSRB3		
##	ORM2		
##	SNX33		
##	CFD		
##	RAB37		
##	RTN2		
##	ZNF469		
##	FLT3		
##	RPL22		
##	FBXL19		
##	IGF2BP2		
##	ERCC1		
##	CD160		
##	AL022313.1		
##	CD8B		
##	SLC25A21		
##	ITPR1		
##	MERTK		
##	ALUX12		
##	ARRDC4		
<pre>cat("Beta_Select_Threshold")</pre>			

Beta_Select_Threshold

cat("\n")			
<pre>cat(genes_to_networkStrict, sep = "\n")</pre>			
<pre>## DEFT1P ## MSRB3 ## ORM1 ## HHEX ## AL022313.1 ## ARRDC4 ## MERTK ## RTN2</pre>			
sink()			