AML Cancer Analysis

Bravo, Williams, and Acharjee

19 Sept 2018

```
#Libraries
```

\#\#\#\#\# Begin Block 1

```
setwd("~/AnimeshReview/LauraPaper/Journal of Translational Medicine /LauraFinal/")
library(readxl)
library(data.table)
library(tidyverse)
library(dplyr)
library(devtools)
library(ggcorrplot)
library(car)
library(ggpubr)
library(glmnet)
library(summarytools)
library(knitr)
library(htmltools)
library(corrplot)
library(caret)
library(factoextra)
library(Metrics)
library(readr)
library(gplots)
library(dplyr)
library(stringr)
library(readxl)
library(plotly)
library(e1071)
library(ggplot2)
library(reshape2)
library(multtest)
library(ROCR)
library(gridExtra)
library(MLmetrics)
```

\#\#\#\# Begin Load Laura's Functions
doubleAUCfun <- function(xtrain, ytrain, xtest,ytest,s,k) \{
yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s], Predictor2=xtrain[,k])
model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))
new3<-data.frame(Predictor=xtest[,s], Predictor2=xtest[,k])
p3<-predict(model3, new3,type="response")
new5<-data.frame(Outcome=ytest)
pr3 <- prediction(p3, new5)

```
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
}
doubleAUCfunNB <- function(xtrain, ytrain,xtest,ytest,s,k) {
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model4<-naiveBayes(Outcome~Predictor+Predictor2,data=yy3)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])
    p4<-predict(model4,new4,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
    }
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(prob2, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
}
doubleAUCfunRFCross <- function(xtrain, ytrain,xtest,ytest,s,k) {
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    control <- trainControl(method="repeatedcv", number=10, repeats=3) #Is this the only thing needed f
    seed <- 7
    metric <- "Accuracy"
    set.seed(seed)
    #mtry <- 2
    tunegrid <- expand.grid(.mtry=c(1:6))
    set.seed(seed)
    rf_default <- train(Outcome~Predictor+Predictor2,data=yy3, method="rf", metric=metric, tuneGrid=tun
    #print(rf_default)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])
    pred=predict(rf_default, new4,type="prob")
    pred2=predict(rf_default, new4)
    prob2<-NULL
    for (i in 1:dim(pred)[1]){
        prob2[i]<-pred[i,2]/pred[i,1]
    }
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(prob2, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
}
```

```
doubleAUCfunSVM <- function(xtrain, ytrain,xtest,ytest,s,k) {
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    seed <- 7
    set.seed(seed)
    model3<-svm(Outcome~Predictor+Predictor2,data=yy3)
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])
    p3<-predict(model3,new3,decision.values = TRUE)
    p4<-attr(p3,"decision.values")
    new5<-data.frame(Outcome=ytest)
    pr3<- prediction(p4, new5)
    #table(p3, new5)
    #confusionMatrix(p3, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
}
doubleAUCfunSVMCross <- function(xtrain, ytrain,xtest,ytest,s,k) {
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    seed <- 7
    set.seed(seed)
    model4<-svm(Outcome~Predictor+Predictor2,data=yy3,method="C-classification",
            kernel="radial", gamma = 0.01, cost = 100,cross=10, probability=TRUE)
    new4<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])
    p4<-predict(model4,new4,decision.values = TRUE)
    p5<-attr(p4,"decision.values")
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(p5, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
}
doublePlusfun <- function(xtrain, ytrain,xtest,ytest,s,k) {
yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))
new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])
p3<-predict(model3,new3,type="response")
new5<-data.frame(Outcome=ytest)
pr <- prediction(p3, new5)
Acc <- performance(pr, measure="acc")
AccV<-Acc@y.values[[1]][max(which(Acc@x.values[[1]] >= 0.5))]
Sens <- performance(pr, measure= "sens")
SensV<-Sens@y.values[[1]][max(which(Sens@x.values[[1]] >= 0.5))]
Spec <- performance(pr, measure= "spec")
SpecV<-Spec@y.values[[1]][max(which(Spec@x.values[[1]] >= 0.5))]
Prec <- performance(pr, measure= "prec")
PrecV<-Prec@y.values[[1]][max(which(Prec@x.values[[1]] >= 0.5))]
```

```
    AllV<-data.frame(Vector=c(AccV, SensV, SpecV, PrecV))
    return(AllV)
}
doubleROCfun <- function(xtrain, ytrain,xtest,ytest,s,k) {
    yy3<-data.frame(Outcome=ytrain, Predictor=xtrain[,s],Predictor2=xtrain[,k])
    model3<-glm(Outcome~Predictor+Predictor2,data=yy3, family=binomial(link='logit'))
    new3<-data.frame(Predictor=xtest[,s],Predictor2=xtest[,k])
    p3<-predict(model3,new3,type="response")
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(p3, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    result<-prf3
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    return(result)
}
MeansNames <- function(doubleAUCR,trial){
    doubleAUCR<-as.data.frame(doubleAUCR)
    doubleAUCR<-mutate(doubleAUCR, Means=rowMeans(doubleAUCR))
    row.names(doubleAUCR)<-trial
    return(doubleAUCR)
}
multipleAUCfun <- function(xtrain,ytrain,xtest,ytest) {
    yy3<-data.frame(Outcome=ytrain,xtrain)
    model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))
    new3<-data.frame(xtest)
    p3<-predict(model3,new3,type="response")
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(p3, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
    return(result2)
}
multipleAUCfunNB <- function(xtrain, ytrain,xtest,ytest) {
    yy3<-data.frame(Outcome=ytrain,xtrain)
    model4<-naiveBayes(Outcome~.,data=yy3)
    new3<-data.frame(xtest)
    p4<-predict(model4,new3,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
            prob2[i]<-p4[i,2]/p4[i,1]
```

```
    }
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(prob2, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
    return(result2)
}
multipleROCfun <- function(xtrain,ytrain,xtest,ytest) {
    yy3<-data.frame(Outcome=ytrain, xtrain)
    model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))
    new3<-data.frame(xtest)
    p3<-predict(model3,new3,type="response")
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(p3, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
    return(prf3)
}
multipleROCfunNB <- function(xtrain, ytrain,xtest,ytest) {
    yy3<-data.frame(Outcome=ytrain,xtrain)
    model4<-naiveBayes(Outcome~.,data=yy3)
    new3<-data.frame(xtest)
    p4<-predict(model4,new3,type="raw")
    #without raw write confusion matrix directly
    prob2<-NULL
    for (i in 1:dim(p4)[1]){
        prob2[i]<-p4[i,2]/p4[i,1]
    }
    new5<-data.frame(Outcome=ytest)
    pr3 <- prediction(prob2, new5)
    prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
    auc3 <- performance(pr3, measure = "auc")
    auc3 <- auc3@y.values[[1]]
    result2<-auc3
    return(prf3)
}
singleAUCfun <- function(xtrain, ytrain,xtest,ytest,s) {
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))
    new2<-data.frame(Predictor=xtest[,s])
    p<-predict(model2,new2,type = "response")
    new4<-data.frame(Outcome=ytest)
```

```
    pr <- prediction(p, new4)
    prf <- performance(pr, measure = "tpr", x.measure = "fpr")
    auc <- performance(pr, measure = "auc")
    auc <- auc@y.values[[1]]
    return(auc)
}
singlePlusfun <- function(xtrain, ytrain,xtest,ytest,s) {
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))
    new2<-data.frame(Predictor=xtest[,s])
    p<-predict(model2,new2,type = "response")
    new4<-data.frame(Outcome=ytest)
    pr <- prediction(p, new4)
    Acc <- performance(pr, measure="acc")
    AccV<-Acc@y.values[[1]][max(which(Acc@x.values[[1]] >= 0.5))]
    Sens <- performance(pr, measure= "sens")
    SensV<-Sens@y.values [[1]][max(which(Sens@x.values[[1]] >= 0.5))]
    Spec <- performance(pr, measure= "spec")
    SpecV<-Spec@y.values[[1]][max(which(Spec@x.values[[1]] >= 0.5))]
    Prec <- performance(pr, measure= "prec")
    PrecV<-Prec@y.values[[1]][max(which(Prec@x.values[[1]] >= 0.5))]
    AllV<-data.frame(Vector=c(AccV, SensV, SpecV, PrecV))
    return(AllV)
}
singleROCfun <- function(xtrain, ytrain,xtest,ytest,s) {
    yy2<-data.frame(Outcome=ytrain, Predictor=xtrain[,s])
    model2<-glm(Outcome~Predictor,data=yy2,family=binomial(link='logit'))
    new2<-data.frame(Predictor=xtest[,s])
    p<-predict(model2,new2,type = "response")
    new4<-data.frame(Outcome=ytest)
    pr <- prediction(p, new4)
    prf <- performance(pr, measure = "tpr", x.measure = "fpr")
    resultU2<-prf
    tomeany<-as.data.frame(prf@y.values)
    tomeanx<-as.data.frame(prf@x.values)
    auc <- performance(pr, measure = "auc")
    auc <- auc@y.values[[1]]
    return(resultU2)
}
```

set.seed(132)

```
### Load AML Data
setwd("/Users/j.williams/AnimeshReview/LauraPaper/Journal of Translational Medicine /LauraFinal/Sept18_
All2 <- readRDS("All2.AML.rds"); savee <- readRDS("savee.AML.rds")
```

\#TRAIN
\#\#\# set n to 10 for now to make quicker
$\mathrm{n}<-100$ \#Number of LASSO and EN loops. Per loop a model with features selected. The 80\% most popular fea
$\# N$ and $n n$ control the number of models created for combinatorial analysis to help in further feature se
N <-10
nn <-25
ErrorsFinEN<-vector(mode="double", length=n)
BetasFinEN<-vector (mode="character", length=n)
LambdaFinEN<-vector (mode="double", length=n)
BNumFinEN<-vector(mode="double", length=n)
see2EN<-data.frame(All="All")
LauCoef1<-data.frame (Coeff="See", stringsAsFactors=FALSE)
BetasTodo<-data.frame(Features="Name", Coefficients=1)
ListError<-vector (mode="double", length=n)
BetasFin<-vector(mode="character", length=n)
LambdaFin<-vector (mode="double", length=n)
BNumFin<-vector(mode="double", length=n)
see2<-data.frame(All="All")
LauCoef1L<-data.frame (Coeff="See", stringsAsFactors=FALSE)
BetasTodoL<-data.frame(Features="Name", Coefficients=1)
\#\#\#\#\# End Block 1
\#\#\#\#\# Begin Block 2
for (i in 1:n)\{
smp_size $=$ floor (0.75 * nrow(All2))
train_ind <- caret: createDataPartition(All2\$Label, p $=0.75$, list $=$ FALSE, times $=1$)
train $=$ All2[train_ind,]
\#Test set
test $=$ All2[-train_ind,]
\#Creates matrices for independent and dependent variables.
xtrain <- train[, !(names(train) \%in\% "Label")] \%>\% as.matrix()
ytrain = train\$Label
xtest <- test[, !(names(test) \%in\% "Label")] \%>\% as.matrix()

```
ytest = test$Label
#Choose lambda value that minimize missclassification error.
#O.5 as elastic nets, all variables with EN are based on ElasticNets analysis. 100 lambdas sampled wi
CVEN=cv.glmnet(xtrain,ytrain,family="binomial",type.measure="class",alpha=0.5,nlambda=100)
attach(CVEN)
Lambda.BestEN<-CVEN$lambda.min #can be either minimum or 1 standard deviation
print(Lambda.BestEN)
CVFinEN=glmnet(xtrain,ytrain,family="binomial",alpha=0.5,lambda=Lambda.BestEN)
CoefEN<-coef(CVFinEN) #Beta coefficients obtained from here
InterceptEN<-CoefEN@x[1]
BetasEN<-CVFinEN$beta
Betas2EN<-data.frame(Features=BetasEN@Dimnames[[1]][BetasEN@i+1], Coefficients=BetasEN@x) #Beta coeff
CVPred1EN = predict(CVFinEN, family="binomial", s=Lambda.BestEN, newx = xtest,type="class") #predict
#Calculate error for categorical values
ytest2<-as.factor(ytest)
ResultsEN<-table(CVPred1EN,ytest)
confusionMatrix(as.factor(CVPred1EN),ytest)
AccuracyEN<-(ResultsEN[1]+ResultsEN [4])/sum(ResultsEN[1:4])
ErrorEN<-1-AccuracyEN
LauCoef<-Betas2EN$Coefficients
LauCoefEN<-data.frame(Coeff=LauCoef,stringsAsFactors=FALSE)
LauCoef1<-rbind(LauCoef1,LauCoefEN)
BetasTodo<-rbind(BetasTodo,Betas2EN) #store coefficients and store betas
seeEN<-Betas2EN$Features
seeEN1<-data.frame(All=seeEN)
see2EN<-rbind(see2EN,seeEN1) #all beta names stored
mEN<-count(see2EN, All) #frequency of the betas stored counted
see3EN<-toString(seeEN)
ErrorsFinEN[i]<-ErrorEN #error of the model stored
BetasFinEN[i]<-see3EN #name of features the model used
BNumFinEN[i]<-length(seeEN) #number of features the model used
LambdaFinEN[i]<-Lambda.BestEN #lambda chosen for model
detach(CVEN)
#Change between Lasso and EN, alpha=1 (*)
CV=cv.glmnet(xtrain,ytrain,family="binomial",type.measure="class",alpha=1,nlambda=100)
attach(CV)
Lambda.Best<-CV$lambda.min
CVFin=glmnet(xtrain,ytrain,family="binomial", alpha=1,lambda=Lambda.Best)
Coef<-coef(CVFin)
Intercept<-Coef@x[1]
Betas<-CVFin$beta
Betas2<-data.frame(Features=Betas@Dimnames[[1]][Betas@i+1], Coefficients=Betas@x)
```

```
    #Calculate error for categorical values
    ytest2<-as.factor(ytest)
    confusionMatrix(as.factor(CVPred1),ytest)
    Results<-table(CVPred1,ytest)
    Accuracy<-(Results[1]+Results[4])/sum(Results [1:4])
    Error<-1-Accuracy
    #visual display of for
    BetasTodoL<-rbind(BetasTodoL,Betas2)
    see<-Betas2$Features
    see1<-data.frame(All=see)
    see2<-rbind(see2,see1)
    m<-count(see2, All)
    see3<-toString(see)
    ListError[i]<-Error
    BetasFin[i]<-see3
    BNumFin[i]<-length(see)
    LambdaFin[i]<-Lambda.Best
    detach(CV)
}
## [1] 0.01410672
## [1] 0.06136322
## [1] 0.0572892
## [1] 0.02276051
## [1] 0.0768437
## [1] 0.01208532
## [1] 0.09287787
## [1] 0.08556725
## [1] 0.06002755
## [1] 0.0477804
## [1] 0.04394421
## [1] 0.09268814
## [1] 0.06570016
## [1] 0.03319311
## [1] 0.05911919
## [1] 0.02889832
## [1] 0.08646156
## [1] 0.008838517
## [1] 0.05092736
## [1] 0.01965162
## [1] 0.0620856
## [1] 0.09770617
## [1] 0.09408764
## [1] 0.07763139
## [1] 0.08480714
## [1] 0.0689899
## [1] 0.07218094
```

 CVPred1 = predict(CVFin, family="binomial", s=Lambda.Best, newx = xtest,type="class")
    ```
## [1] 0.07332494
## [1] 0.0751107
## [1] 0.05546047
## [1] 0.03706898
## [1] 0.01768615
## [1] 0.07290411
## [1] 0.02436325
## [1] 0.1010492
## [1] 0.07947772
## [1] 0.08638957
## [1] 0.06704386
## [1] 0.005414587
## [1] 0.07849055
## [1] 0.06146099
## [1] 0.03060099
## [1] 0.01808845
## [1] 0.09695372
## [1] 0.08502742
## [1] 0.06793977
## [1] 0.08769333
## [1] 0.06770055
## [1] 0.07696627
## [1] 0.02821053
## [1] 0.01849147
## [1] 0.08380528
## [1] 0.07297679
## [1] 0.006236947
## [1] 0.03218741
## [1] 0.100343
## [1] 0.05928835
## [1] 0.0692829
## [1] 0.06440835
## [1] 0.05934364
## [1] 0.08362592
## [1] 0.0537196
## [1] 0.009768704
## [1] 0.08008044
## [1] 0.02443207
## [1] 0.07740715
## [1] 0.01072579
## [1] 0.1275876
## [1] 0.0206432
## [1] 0.1033139
## [1] 0.005817232
## [1] 0.09127219
## [1] 0.0771582
## [1] 0.07655367
## [1] 0.009287085
## [1] 0.07404753
## [1] 0.037219
## [1] 0.01361882
## [1] 0.06059189
## [1] 0.01232926
## [1] 0.01386188
```

```
## [1] 0.09655957
## [1] 0.05262116
## [1] 0.00697718
## [1] 0.05080445
## [1] 0.05765488
## [1] 0.0942935
## [1] 0.02991813
## [1] 0.08112793
## [1] 0.0526637
## [1] 0.07080803
## [1] 0.0766287
## [1] 0.06940108
## [1] 0.08790559
## [1] 0.07147071
## [1] 0.009480638
## [1] 0.1038332
## [1] 0.01677133
## [1] 0.1024412
## [1] 0.02911092
#Visualizing data from LASSO and EN ####
#obtain in a data frame all error, betas names, number and lamda for the N models for each lasso and EN
All_info<-data.frame(Error=ListError, BetasNames=BetasFin, BetasNum=BNumFin, Lambda=LambdaFin)
All_infoEN<-data.frame(Error=ErrorsFinEN, BetasNames=BetasFinEN, BetasNum=BNumFinEN, Lambda=LambdaFinEN
m<-m[-1,]
mEN<-mEN[-1,]
Final_LASSO<-m[order(-m$n),] #order highest frequencies above and filter with those that appear more th
Final_LASSO1<-filter(Final_LASSO,n>40) #threshold selected - 80%
```

Final_EN<-mEN[order (-mEN\$n),]
Final_EN1<-filter (Final_EN, n>40)
Final_Plot_Names<-filter (Final_EN, n>40)
outputVenn2<-venn(list(EN= Final_EN\$All, LASSO = Final_LASSO\$All))

outputVenn<-venn(list(EN= Final_EN1\$All, LASSO = Final_LASSO1\$All))

Freqs<-m[order (-m\$n),]
num<-length (Freqs\$All)
Freqs\$All <- factor(Freqs\$All, levels = Freqs\$All[order(-Freqs\$n)]) \#plot in a bar graph the frequencie ggplot(Freqs, aes $(A l l, n))+$ geom_bar (stat="identity") +theme(axis.text.x $=$ element_text (size=8, angle=90)

LASSO features

FreqsEN<-mEN [order (-mEN\$n),]
numEN<-length(FreqsEN\$All)
FreqsEN\$All <- factor (FreqsEN\$All, levels = FreqsEN\$All[order (-FreqsEN\$n)])
ggplot (FreqsEN, aes(All, n))+geom_bar(stat="identity")+theme(axis.text.x = element_text(size=8, angle=9

EN features

\#plot of how many times each feature appears. Most important will appear in all models = N.
\#Boxplot with Betas and its coefficients

Boxplot1<-BetasTodo[BetasTodo\$Features \%in\% Final_EN1\$All,] \#see which features appear in the filtered ggplot(Boxplot1, aes(Boxplot1\$Features,Boxplot1\$Coefficients))+geom_boxplot()+geom_jitter()


```
Boxplot1["Method"]<-as.factor("EN")
Boxplot2<-BetasTodoL[BetasTodoL$Features %in% Final_LASSO1$All,]
ggplot(Boxplot2,aes(Boxplot2$Features,Boxplot2$Coefficients))+geom_boxplot()+geom_jitter()
```


Boxplot2["Method"]<-as.factor("LASSO")
Fin_Boxplot<-rbind(Boxplot1,Boxplot2) \#Unite both boxplots LASSO and EN
ggplot(Fin_Boxplot, aes(Fin_Boxplot\$Features,Fin_Boxplot\$Coefficients))+geom_boxplot(aes(color=Method))+

Beta coefficients EN and LASSO


```
All_Feat<-rbind(Final_LASSO1,Final_EN1)
All_Feat2<-unique(All_Feat$All) #select the filtered betas in both.
#All_Feat2<-data.frame(All_Feat2)
Betas_select<-All2[,colnames(All2[,intersect(gsub("`", "", All_Feat2), colnames(All2))])]
Betas_select["Label"]<-All2$Label
Betas_select<-data.frame(Betas_select)
#Beta_select are the final features selected.
##### End Block 2
##### Begin Block 3
###Combinatorial analysis ####
NumVar<-length(Betas_select)
maxCombF<-data.frame(Name=toString("Trial"),AUC=0)
auc3max<-0
cont<-0
cont2<-0
for (p in 1:N){ #N different measurements of AUC values, mean done at the end.
    smp_size<-floor(0.65 * nrow(Betas_select))
    train_ind <- caret::createDataPartition(All2$Label, p = 0.65, list = FALSE, times = 1)
    # Training set
    train<-Betas_select[train_ind, ]
```

```
# Test set
test<-Betas_select[-train_ind, ]
xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
ytrain<-train$Label
ytest<-test$Label
xtest<-data.frame(xtest)
xtrain<-data.frame(xtrain)
y<-Betas_select[,NumVar]
X<-Betas_select[,1:(NumVar-1)]
levels(ytrain)[1]<-"0"
levels(ytrain)[2]<-"1"
levels(ytest)[1]<-"0"
levels(ytest)[2]<-"1"
for (k in 1:nn){
    columns<-c(1:dim(xtrain)[2])
    columns<-sample(columns)
    d<-xtrain[,columns]
    for (i in 1:dim(xtrain)[2]){
        for (j in 1:dim(xtrain)[2]){
            yy3<-data.frame(Outcome=ytrain,d[i:j])
            model3<-glm(Outcome~.,data=yy3, family=binomial(link='logit'))
            dd<-xtest[,columns]
            new3<-data.frame(dd[i:j])
            p3<-predict(model3,new3,type="response")
            new5<-data.frame(Outcome=ytest)
            pr3 <- prediction(p3, new5)
            prf3 <- performance(pr3, measure = "tpr", x.measure = "fpr")
            auc3 <- performance(pr3, measure = "auc")
            auc3 <- auc3@y.values[[1]]
            result2<-auc3
            if (auc3>auc3max){
                if (i>j){
                    maxComb<-data.frame(Name=toString(names(d)[j:i]),AUC=auc3)
                        auc3max<-auc3
                        cont<-cont+1
                }
                else{
                    maxComb<-data.frame(Name=toString(names(d)[i:j]),AUC=auc3)
                        auc3max<-auc3
                        cont<-cont+1
                }
            }
```

```
                else{
                    cont2<-cont2+1
            }
            }
        }
    }
    maxCombF<-rbind(maxCombF,maxComb)
    auc3max<-0
}
maxCombF2<-maxCombF[order(maxCombF$AUC),]
names<-maxCombF2$Name[dim(maxCombF2) [1]]
names1<-as.character(names)
names1<-strsplit(names1,", ")
names<-as.data.frame(names1)
Betas_select2<-All2[,colnames(All2[,intersect(gsub("`", "", names[,1]), colnames(All2))])]
Betas_select2["Label"]<-savee
Betas_select2<-as.data.frame(Betas_select2)
##### End Block 3
##### Begin Block 4
```

\#Random mix between variables and AUC value obtained through GLM model, rough approximation of future p
\#Betas_select2, final features selected.
NumVar<-length(Betas_select2)
$\mathrm{N}<-1000$ \#number of models produced (both permuted (random) and real) - for all univariate (Each featur
\#Real program runs with 1000 - Takes 12 hours.
multipleAUC<-matrix(rnorm(2),1,N)
multipleAUCR<-matrix (rnorm(2), 1,N)
multipleAUCNB<-matrix (rnorm(2),1,N)
multipleAUCNBR<-matrix(rnorm(2), 1,N)
multipleROC<-matrix(as.list(rnorm(2)),1,N)
multipleROCR<-matrix(as.list(rnorm(2)),1,N)
multipleNBROC<-matrix(as.list(rnorm(2)),1,N)
multipleNBROCR<-matrix(as.list(rnorm(2)),1,N)
singleROC<-list()
doubleROC<-list()
singleROCR<-list()
doubleROCR<-list()
doublePlus<-list()
singlePlus<-list()

```
singleAUC<-matrix(rnorm(2),NumVar-1,N)
doubleAUC<-matrix(rnorm(2),(NumVar-1),N)
singleAUCR<-matrix(rnorm(2),NumVar-1,N)
doubleAUCR<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCSVMR<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCSVM<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCSVMCrossR<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCSVMCross<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCRFCross<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCRFCrossR<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCNBR<-matrix(rnorm(2),(NumVar-1),N)
doubleAUCNB<-matrix(rnorm(2),(NumVar-1),N)
MatsingleROC<-matrix(as.list(rnorm(2)),NumVar-1,N)
MatsingleROCR<-matrix(as.list(rnorm(2)),NumVar-1,N)
MatdoubleROC<-matrix(as.list(rnorm(2)),(NumVar-1),N)
MatdoubleROCR<-matrix(as.list(rnorm(2)),(NumVar-1),N)
MatsinglePlus<-matrix(as.list(rnorm(2)),NumVar-1,N)
MatdoublePlus<-matrix(as.list(rnorm(2)),(NumVar-1),N)
MatsinglePlusR<-matrix(as.list(rnorm(2)),NumVar-1,N)
MatdoublePlusR<-matrix(as.list(rnorm(2)), (NumVar-1),N)
##### End Block 4
##### Begin Block 5
for (j in 1:N){ #N different measurements of AUC values, mean done at the end.
    smp_size<-floor(0.65 * nrow(Betas_select2))
    #set.seed(907)
    train_ind <- caret::createDataPartition(All2$Label, p = 0.65, list = FALSE, times = 1)
    # Training set
    train<-Betas_select2[train_ind, ]
    # Test set
    test<-Betas_select2[-train_ind, ]
    xtrain <- train[ , !(names(train) %in% "Label")] %>% as.matrix()
    xtest <- test[ , !(names(test) %in% "Label")] %>% as.matrix()
    ytrain<-train$Label
    ytest<-test$Label
    xtest<-data.frame(xtest)
    xtrain<-data.frame(xtrain)
    y<-Betas_select2[,NumVar]
    X<-Betas_select2[,1:(NumVar-1)]
```

```
levels(ytrain)[1]<-"0"
levels(ytrain)[2]<-"1"
levels(ytest)[1]<-"0"
levels(ytest)[2]<-"1"
## multiple, good
multipleAUCNB[1,j]<-multipleAUCfunNB(xtrain, ytrain,xtest,ytest)
multipleAUC[1,j]<-multipleAUCfun(xtrain, ytrain,xtest,ytest)
multipleNBROC[[j]]<-multipleROCfunNB(xtrain, ytrain,xtest,ytest)
multipleROC[[j]]<-multipleROCfun(xtrain, ytrain,xtest,ytest)
#separate
## single, should be good
for (s in (1:(NumVar-1))){
    s<-as.numeric(s)
    singleAUC[s,j]<-singleAUCfun(xtrain, ytrain,xtest,ytest,s)
    singleROC[[s]]<-singleROCfun(xtrain, ytrain,xtest,ytest,s)
    MatsinglePlus[s,j]<-singlePlusfun(xtrain, ytrain,xtest,ytest,s)
}
MatsingleROC[,j]<-matrix(singleROC)
```

\#Null Hypothesis \#\#\#\#
\# Training set
train\$Label<-sample(train\$Label)
test\$Label<-sample(test\$Label)
\#Permuted data, will make sure that are models are really valid as randomizing the label should yield
\# Test set
xtrain <- train[, !(names(train) \%in\% "Label")] \%>\% as.matrix()
xtest <- test [, !(names(test) \%in\% "Label")] \%>\% as.matrix()
ytrain<-train\$Label
ytest<-test\$Label
xtest<-data.frame(xtest)
xtrain<-data.frame(xtrain)

```
    y<-Betas_select2[,NumVar]
    X<-Betas_select2[,1:(NumVar-1)]
    levels(ytrain)[1]<-"0"
    levels(ytrain) [2]<-"1"
    levels(ytest)[1]<-"0"
    levels(ytest)[2]<-"1"
    multipleAUCNBR[1,j]<-multipleAUCfunNB(xtrain, ytrain,xtest,ytest)
    multipleAUCR[1,j]<-multipleAUCfun(xtrain, ytrain,xtest,ytest)
    multipleNBROCR[[j]]<-multipleROCfunNB(xtrain, ytrain,xtest,ytest)
    multipleROCR[[j]]<-multipleROCfun(xtrain, ytrain,xtest,ytest)
    for (s in (1:(NumVar-1))){
        s<-as.numeric(s)
        singleAUCR[s,j]<-singleAUCfun(xtrain, ytrain,xtest,ytest,s)
        singleROCR[[s]]<-singleROCfun(xtrain, ytrain,xtest,ytest,s)
        MatsinglePlusR[s,j]<-singlePlusfun(xtrain, ytrain,xtest,ytest,s)
    }
    MatsingleROCR[,j]<-matrix(singleROCR)
    #
}
##### End Block 5
##### Begin Block 6
    names2<-sapply(1:(NumVar-1), function(i){paste0("NISS/",names(xtrain)[i])})
trial<-NULL
h=1
for (b in (2:NumVar-1)) {
    print(b)
    trial[b]<-names2[h]
    h=h+1
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
```

```
## [1] 8
singleAUC<-as.data.frame(singleAUC)
singleAUC<-mutate(singleAUC, Means=rowMeans(singleAUC))
row.names(singleAUC)<-names(xtrain)
singleAUCR<-as.data.frame(singleAUCR)
singleAUCR<-mutate(singleAUCR, Means=rowMeans(singleAUCR))
row.names(singleAUCR)<-names(xtrain)
multipleAUCNBR<-as.data.frame(multipleAUCNBR)
multipleAUCNBR["Means"]<-rowMeans(multipleAUCNBR)
multipleAUCR<-as.data.frame(multipleAUCR)
multipleAUCR["Means"]<-rowMeans(as.data.frame(multipleAUCR))
multipleAUCNB<-as.data.frame(multipleAUCNB)
multipleAUCNB["Means"]<-rowMeans(as.data.frame(multipleAUCNB))
multipleAUC<-as.data.frame(multipleAUC)
multipleAUC["Means"]<-rowMeans(as.data.frame(multipleAUC))
Final<-data.frame(MultiNB=t(multipleAUCNB),MultiNBRand=t(multipleAUCNBR),Multi=t(multipleAUC),MultiRand
FinalMeans<-data.frame(MultiNB=multipleAUCNB$Means,MultiNBRand=multipleAUCNBR$Means,Multi=multipleAUC$M
#sacar ROC CURVES #####
print("here")
## [1] "here"
for (g in 1:(NumVar-1)){
    plot(MatsingleROC[[g,1]],lwd=3,main=paste("ROC curve of", names(xtrain)[g]))
    for (b in 1:N){
        plot(MatsingleROCR[[g,b]],col=b,lty=3,add=TRUE)
    }
}
```

ROC curve of DEFT1P

ROC curve of MSRB3

ROC curve of ORM1

ROC curve of HHEX

ROC curve of ALO22313.1

ROC curve of ARRDC4

ROC curve of MERTK

ROC curve of RTN2


```
plot(multipleROC[[1]],lwd=3,main=paste("ROC curve of", trial[1]))
for (b in 1:N){
    plot(multipleNBROCR[[b]], col=b,lty=3,add=TRUE)
}
```


ROC curve of NISS/DEFT1P


```
#
#
#
AUCT<-as.data.frame(t(singleAUC[1:dim(singleAUC)[2]-1]))
AUC2T<-as.data.frame(t(singleAUCR[1:dim(singleAUCR)[2]-1]))
one<-as.data.frame(singleAUC$Means)
two<-as.data.frame(singleAUCR$Means)
Mean<-data.frame(one,two)
Mean<-as.matrix(Mean)
#
nm<-names(AUCT)
for (j in 1:(NumVar-1)){
    Mono<-data.frame(Mono=AUCT[,j],Label=as.factor(c(rep("model",dim(AUCT) [1]))))
    Mono1<-data.frame(Mono=AUC2T[,j],Label=as.factor(c(rep("permuted data",dim(AUC2T) [1]))))
    Mono<-rbind(Mono,Mono1)
    print(ggdensity(Mono, x = "Mono", fill = "Label", palette = "jco")+geom_vline(xintercept =Mean[j,],li
}
```

Permuted versus real model, density plot of AUC curve of DEFT1P

Permuted versus real model, density plot of AUC curve of MSRB3

Permuted versus real model, density plot of AUC curve of ORM1

Permuted versus real model, density plot of AUC curve of HHEX

Permuted versus real model, density plot of AUC curve of AL02231E

Permuted versus real model, density plot of AUC curve of ARRDC4

Permuted versus real model, density plot of AUC curve of MERTK

Permuted versus real model, density plot of AUC curve of RTN2
Label \square model \square permuted data


```
# #
n <- length(plot)
# ###Accuracy, Precision etc
#
plot3<-list()
plot4<-list()
Data<-c("Accuracy","Sensitivity","Specificity","Precision")
##### End Block 6
##### Begin Block 7
#
#Accuracy
Mono<-NULL
MonoR<-NULL
for (s in 1:(NumVar-1)){
    for (d in 1:4){
        for (j in 1:N){
            Mono1<-data.frame(Mono=MatsinglePlus[s,j][[1]][[d]])
            Mono<-rbind(Mono,Mono1)
            Mono1R<-data.frame(MonoR=MatsinglePlusR[s,j][[1]][[d]])
            MonoR<-rbind(MonoR,Mono1R)
        }
        MonoLab<-data.frame(Mono=Mono,Label=as.factor(c(rep("model",dim(Mono)[1]))))
        MonoLabR<-data.frame(Mono=MonoR,Label=as.factor(c(rep("permuted data",dim(MonoR)[1]))))
```

```
        colnames(MonoLabR) [1]<-c("Mono")
        Means<-data.frame(Mean=mean(MonoLab$Mono),MeanR=mean(MonoLabR$Mono))
        Mono<-rbind(MonoLab,MonoLabR)
        plot3[[d]]<-ggdensity(Mono, x = "Mono", fill = "Label", palette = "jco")+labs(title= paste("Value
        Mono<-NULL
        MonoR<-NULL
    }
    print(grid.arrange(plot3[[2]], plot3[[3]],plot3[[4]],plot3[[1]], ncol=2))
}
```

Value : Sensitivity for DEFT1F
Label \square model \square permuted data

Value : Accuracy for DEFT1P
Label \square model \square permuted data

```
## TableGrob (2 x 2) "arrange": 4 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
## 4 4 (2-2,2-2) arrange gtable[layout]
```

Value : Sensitivity for MSRBÉ
Label \square model \square permuted data

Value : Accuracy for MSRB3
Label \square model \square permuted data

TableGrob (2 x 2) "arrange": 4 grobs

TableGrob (2 x 2) "arrange": 4 grobs

z cells name grob

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

Value : Sensitivity for ORM1
Label \square model \square permuted data
\square

Value : Precision for ORM1
Label \square model \square permuted data

Value: Specificity for ORM1
Label \square model \square permuted data

Value : Accuracy for ORM1
Label \square model \square permuted data

TableGrob (2 x 2) "arrange": 4 grobs

TableGrob (2 x 2) "arrange": 4 grobs

z cells name grob

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

Value : Sensitivity for HHEX
Label \square model \square permuted data

Value: Specificity for HHEX
Label \square model \square permuted data

Value : Precision for HHEX
Label \square model \square permuted data

Value : Accuracy for HHEX
Label \square model \square permuted data

TableGrob (2 x 2) "arrange": 4 grobs

TableGrob (2 x 2) "arrange": 4 grobs

z cells name grob

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

Value : Sensitivity for AL0223
Label \square model \square permuted data

Value: Specificity for AL0223
Label \square model \square permuted data

Value: Precision for AL0223
Label \square model \square permuted data

Value : Accuracy for AL0223
Label \square model \square permuted data

TableGrob (2 x 2) "arrange": 4 grobs

TableGrob (2 x 2) "arrange": 4 grobs

z cells name grob

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

Value : Sensitivity for ARRDC Label \square model \square permuted data

Value: Specificity for ARRDC Label \square model \square permuted data

Value : Precision for ARRDC Label \square model \square permuted data

Value: Accuracy for ARRDC
Label \square model \square permuted data

TableGrob (2 x 2) "arrange": 4 grobs

TableGrob (2 x 2) "arrange": 4 grobs

z cells name grob

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]


```
Value : Sensitivity for RTN2
Label \(\square\) model \(\square\) permuted data
Value: Specificity for RTN2
Label \(\square\) model \(\square\) permuted data
```


Value : Precision for RTN2 Label \square model \square permuted data

Value : Accuracy for RTN2 Label \square model \square permuted data

```
## TableGrob (2 x 2) "arrange": 4 grobs
```


TableGrob (2 x 2) "arrange": 4 grobs

z cells name grob

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

Meanq<-data.frame(multipleAUC$Means,multipleAUCR$Means)
MA<-data.frame(Mono=t(multipleAUC[1:dim(multipleAUC) [2]-1]))
MA["Label"]<-as.factor(c(rep("model",dim(MA)[1])))
MAR<-data.frame(Mono=t(multipleAUCR[1:dim(multipleAUCR)[2]-1]))
MAR["Label"]<-as.factor(c(rep("permuted data",dim(MAR)[1])))
Mono<-rbind(MA,MAR)
pp<-ggdensity(Mono, x = "Mono", fill = "Label", palette = "jco")+geom_vline(xintercept=Meanq[1,1],linet
print(pp+geom_vline(xintercept=Meanq[1,2],linetype = 2,color="black",show.legend = TRUE))

```

AUC curve of GLM Multiple c("DEFT1P", "MSRB3", "ORM1", "HHEX"

```

Meanq<-data.frame(multipleAUCNB$Means,multipleAUCNBR$Means)
MA<-data.frame(Mono=t(multipleAUCNB[1:dim(multipleAUCNB) [2]-1]))
MA["Label"]<-as.factor(c(rep("model",dim(MA)[1])))
MAR<-data.frame(Mono=t(multipleAUCNBR[1:dim(multipleAUCNBR)[2]-1]))
MAR["Label"]<-as.factor(c(rep("permuted data",dim(MAR)[1])))
Mono<-rbind(MA,MAR)
pp<-ggdensity(Mono, x = "Mono", fill = "Label", palette = "jco")+geom_vline(xintercept=Meanq[1,1],linet
print(pp+geom_vline(xintercept=Meanq[1,2],linetype = 2,color="black",show.legend = TRUE))

```
```

AUC curve of NB Multiple c("DEFT1P", "MSRB3", "ORM1", "HHEX", "
Label }\square\mathrm{ model }\square\mathrm{ permuted data
M,

```
```

ee<-regex(names,".")

```
ee<-regex(names,".")
Final<-data.frame(MultiNB=t(multipleAUCNB),MultiNBRand=t(multipleAUCNBR),Multi=t(multipleAUC),MultiRand:
Final<-data.frame(MultiNB=t(multipleAUCNB),MultiNBRand=t(multipleAUCNBR),Multi=t(multipleAUC),MultiRand:
FinalMeans<-data.frame(MultiNB=multipleAUCNB$Means,MultiNBRand=multipleAUCNBR$Means,Multi=multipleAUC$M
FinalMeans<-data.frame(MultiNB=multipleAUCNB$Means,MultiNBRand=multipleAUCNBR$Means,Multi=multipleAUC$M
##### End Block 7
##### End Block 7
genes_to_network <- colnames(Betas_select) [-length(colnames(Betas_select))]
genes_to_network <- colnames(Betas_select) [-length(colnames(Betas_select))]
genes_to_networkStrict <- colnames(Betas_select2)[-length(colnames(Betas_select2))]
genes_to_networkStrict <- colnames(Betas_select2)[-length(colnames(Betas_select2))]
sink("genes_to_network.txt")
sink("genes_to_network.txt")
cat("Beta_Select_Intial")
cat("Beta_Select_Intial")
## Beta_Select_Intial
## Beta_Select_Intial
cat("\n")
cat("\n")
cat(genes_to_network, sep = "\n")
cat(genes_to_network, sep = "\n")
## LCN2
## LCN2
## CRISP3
## CRISP3
## CAMP
## CAMP
## HHEX
## HHEX
## HOXA9
```


HOXA9

```
```


KLF10

SOX4

BMP1

TRIO

SOCS5

MAP3K7CL

MAPK12

DEFT1P

CD8B2

FSCN1

DNAH1O

CYP4F3

HOXA10

EEF1A1

C6orf48

PNKD

SLC17A9

ORM1

MARK4

MMP9

ASPH

GAS5

OLFM4

VPREB3

IL7R

NETO2

C5

UBE2E2

TUBB1

MSRB3

ORM2

SNX33

CFD

RAB37

RTN2

ZNF469

FLT3

RPL22

FBXL19

IGF2BP2

ERCC1

CD160

AL022313.1

CD8B

SLC25A21

ITPR1

MERTK

ALOX12

ARRDC4

cat("Beta_Select_Threshold")

Beta_Select_Threshold

```
```

cat("\n")
cat(genes_to_networkStrict, sep = "\n")

DEFT1P

MSRB3

ORM1

HHEX

AL022313.1

ARRDC4

MERTK

RTN2

sink()

```
```

