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Abstract 23 

Rationale: The M2-like tumor-associated macrophages (TAMs) are independent prog-24 

nostic factors in melanoma. 25 

Methods: We performed weighted gene co-expression network analysis (WGCNA) to 26 

identify the module most correlated with M2-like TAMs. The Cancer Genome Atlas 27 

(TCGA) patients were classified into two clusters that differed based on prognosis and 28 

biological function, with consensus clustering. A prognostic model was established 29 

based on the differentially expressed genes (DEGs) of the two clusters. We investigated 30 

the difference in immune cell infiltration and immune response-related gene expression 31 

between the high and low risk score groups. 32 

Results: The risk score was defined as an independent prognostic value in melanoma. 33 

VARS1 was a hub gene in the M2-like macrophage-associated WGCNA module that the 34 

DepMap portal demonstrated was necessary for melanoma growth. Overexpressing 35 

VARS1 in vitro increased melanoma cell migration and invasion, while downregulating 36 

VARS1 had the opposite result. VARS1 overexpression promoted M2 macrophage po-37 

larization and increased TGF-β1 concentrations in tumor cell supernatant in vitro. 38 

VARS1 expression was inversely correlated with immune-related signaling pathways 39 

and the expression of several immune checkpoint genes. In addition, the VARS1 ex-40 

pression level helped predict the response to anti-PD-1 immunotherapy. Pan-cancer 41 

analysis demonstrated that VARS1 expression negatively correlated with CD8 T cell 42 

infiltration and the immune response-related pathways in most cancers. 43 

Conclusions: We established an M2-like TAM-related prognostic model for melanoma 44 



and explored the role of VARS1 in melanoma progression, M2 macrophage polarization, 45 

and the development of immunotherapy resistance. 46 

 47 
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 50 

Introduction 51 

Melanoma is a highly aggressive skin cancer with early metastases and have the highest 52 

mortality rate in skin cancer43. Its incidence has increased in recent years and it has 53 

become one of the fastest growing tumors. Diagnosis rates are also increasing among 54 

young people44. Despite the recent advances in neoadjuvant immunotherapy, chemo-55 

therapy, and targeted therapy improving patient prognosis, many patients only achieve 56 

temporary remission and eventually develop therapy resistance. Therefore, the mortal-57 

ity rates continue to be unacceptably high2, 24. 58 

Bone marrow-derived cells penetrate the tumor and differentiate into macro-59 

phages termed tumor-associated macrophages (TAMs), which are the main component 60 

of tumor-infiltrating leukocytes49. Most TAMs not only lose the ability to combat tumor 61 

progression but also support tumor cell growth and metastasis3, 40. TAMs help to build 62 

an immune dysfunctional microenvironment in tumors by secreting many immunosup-63 

pressive cytokines5, 26. Furthermore, as a major source of PD-L1, TAMs inhibit cyto-64 

toxic T cell infiltration and function, which drives undesirable resistance to neoadjuvant 65 

immunotherapy33. In tumors, TAMs predominantly polarize into the pro-tumoral M2 66 



phenotype32, 48 and a high M2/M1 ratio is an independent prognostic factor in many 67 

cancers, especially melanoma12, 34, 48. Therefore, it is necessary to describe molecular 68 

characteristics combining patients’ M2-like TAMs infiltration and to determine the key 69 

regulatory factors of M2-like TAM polarization. 70 

To provide new insights into the molecular features of M2-like TAM infiltration 71 

in patients with melanoma, we identified two distinct clusters (Cluster 1 and Cluster 2) 72 

based on the gene module most positively correlated with M2-like TAM infiltration in 73 

The Cancer Genome Atlas skin cutaneous melanoma (TCGA-SKCM) dataset. Then, 74 

we investigated the differences in prognosis, multi-omics, and functional enrichment 75 

between the two clusters. Next, we constructed a prognostic model according to the 76 

differentially expressed genes (DEGs) of the two clusters and compared the prognosis, 77 

immune cell infiltration, immune-related gene profile, and immunotherapy response in 78 

the high- and low-risk groups. 79 

Subsequently, VARS1 was characterized as the hub gene of the module most 80 

associated with M2-like TAM infiltration, which suggested that VARS1 is linked to 81 

TAM polarization and could be defined as a new potential target in melanoma progres-82 

sion. VARS1 is a member of the aminoacyl-tRNA synthetases (ARSs) and its primary 83 

function is to link valines to their corresponding tRNAs in protein synthesis28. VARS1 84 

mainly plays an important role in progressive brain disease14. Walbrecq et al. proved 85 

that hypoxia induced VARS1-bearing extracellular vesicle secretion by melanoma, 86 

which correlated with worse melanoma outcomes60. Nevertheless, the role of VARS1 87 

in melanoma remains unclear. 88 



Our study demonstrates that VARS1 expression was negatively correlated with 89 

the immune-related signaling pathways and the infiltration of antitumor cells such as 90 

CD8 T cells but was positively correlated with the accumulation of M2-like TAMs. 91 

VARS1 overexpression promoted M2-like macrophage polarization and melanoma cell 92 

migration and invasion in vitro, while knockdown of VARS1 decreased melanoma cell 93 

migration and invasion. VARS1 was inversely correlated with several immune check-94 

point genes and could be a predictive biomarker of anti-PD-1 immunotherapy response. 95 

Furthermore, pan-cancer analysis revealed that VARS1 correlated negatively with CD8 96 

T cell infiltration in most cancers and demonstrated unfavorable prognostic value in 97 

several cancers. 98 

 99 

Materials and methods 100 

Dataset source and preprocessing 101 

The analyses involved patients from four SKCM cohorts (GSE65904, GSE98394, 102 

GSE78220, GSE91061) and TCGA-SKCM. Patients without survival information and 103 

RNA sequencing (RNA-seq) data were excluded from the analysis. For the Gene Ex-104 

pression Omnibus (GEO) dataset, related clinical data and transcriptome expression 105 

data were downloaded using the R GEOquery package8 and the related GEO datasets 106 

were merged using the ComBat algorithm31. Transcriptome FPKM (fragments per 107 

kilobase transcript per million fragments) value and clinical data were downloaded 108 

from the Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/) using the R 109 

TCGAbiolinks package7. The FPKM values were transformed to TPM (transcripts per 110 

https://portal.gdc.cancer.gov/


million) values for subsequent analyses. 111 

 112 

Weighted gene co-expression network analysis (WGCNA) 113 

We constructed mRNA co-expression networks in TCGA-SKCM dataset using the R 114 

WGCNA package29. First, the Pearson correlation coefficient between each pair of 115 

genes was calculated to obtain a similarity matrix. WGCNA converted the similarity 116 

matrix to an adjacency matrix using a power function. Among all soft thresholds (β) 117 

with R2 > 0.9, we chose the automatic value β (β = 5) returned by the WGCNA 118 

pickSoftThreshold function. As recommended by the WGCNA guidelines, 0.25 was 119 

chosen as the network merge height. We used default settings for other WGCNA pa-120 

rameters. 121 

 122 

M2-like TAM infiltration-related cluster acquisition 123 

We selected the module associated with the infiltration of M2-like TAMs and CD8 T 124 

cells and the genes in this module underwent univariate Cox regression analysis. Then, 125 

the 125 genes associated with survival in univariate analysis (p < 0.05) were entered 126 

into the R ConsensusClusterPlus package62 to perform consensus clustering for TCGA-127 

SKCM patients. The optimal K value was identified as 2 based on the result of the 128 

cluster consensus value and cumulative distribution function. 129 

 130 

Development of the M2-like TAM-related prognostic model 131 

The DEGs of two clusters with a false discovery rate (FDR) < 0.05 were identified by 132 



the R DESeq2 package36. Then, the 10,269 DEGs underwent univariate Cox analysis 133 

in TCGA dataset and yielded 3390 progression-associated genes (p < 0.05). Further 134 

reduction of candidate genes using lasso (least absolute shrinkage and selection opera-135 

tor) logistic regression with 10-fold cross-validation was performed via the R glmnet 136 

package13. Then, the genes were filtered further using a multivariate proportional haz-137 

ard regression model (using both stepwise regression). The risk score was calculated as 138 

follows: 0.323×ATP13A5 + 0.465×C1orf105 + 0.195×TM6SF2 + 0.151×HEYL + 139 

0.146×PTK6 + 0.065×KIT + 0.049×ENTHD1 – 0.209×SLC18A1 – 0.201×ZMAT1 – 140 

0.158×CD14. The TCGA and validation cohort risk scores used the same model score 141 

threshold. Patients were stratified into low- and high-risk groups based on the median 142 

risk score cut-off and the differences in overall survival (OS) were compared using the 143 

R survival package56. The area under the curve (AUC) was calculated with the R tim-144 

eROC package35 to evaluate the accuracy of the prognostic model. 145 

 146 

Functional enrichment analysis and estimation of immune cell infiltration 147 

Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were 148 

performed with the gsva20 and clusterProfiler65 packages in R, respectively. The gene 149 

sets for GSVA and GSEA were downloaded from the Molecular Signatures Database 150 

(MSigDB) v7.4 database. Immune cell infiltration was quantified using the CIBER-151 

SORT algorithm47 based on the TPM value of TCGA-SKCM patients. 152 

 153 

Analysis of genomic alterations 154 



Somatic mutations and somatic copy number alterations (CNAs) were downloaded 155 

from GDC using the R TCGAbiolinks package. The somatic mutations and CNAs 156 

(GISTIC output) data were visualized using the R maftools package41. The significant 157 

CNA amplifications and deletions were identified by GISTIC 2.042. The methylation 158 

data of TCGA patients were downloaded from the GDC portal. Differentially methyl-159 

ated CpGs between Cluster 1 and Cluster 2 were examined with the t-test. CpGs in 160 

chromosomes X and Y were excluded from the analysis. CpGs with FDR < 0.05 were 161 

characterized as differentially methylated CpGs. 162 

 163 

Protein–protein interaction (PPI) network construction and hub gene identification 164 

The STRING database (v.11.5) was used to establish PPIs between genes in the 165 

WGCNA module with a confidence level of 0.4, and the interaction network was visu-166 

alized using Cytoscape. The hub genes of the WGCNA module were screened with the 167 

Closeness, Stress, and Radiality algorithms of the cytoHubba plugin6 in Cytoscape. 168 

 169 

Cell culture and transfection 170 

We used SK-MEL-28 (ATCC, Cellcook Biotechnology, Guangzhou, China), A375 171 

(ATCC, Cellcook Biotechnology, Guangzhou, China), and THP1 cells (ATCC, Cell-172 

cook Biotechnology, Guangzhou, China) for in vitro experiments. A375 and SK-MEL-173 

28 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supple-174 

mented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (all from 175 

Gibco, Carlsbad, CA, USA). The THP1 cells were cultured in RPMI 1640 medium 176 



containing 10% FBS, 1% penicillin-streptomycin, 2 mM glutamine, 10 mM HEPES, 177 

and 1× non-essential amino acids (all from Gibco). 178 

The VARS1 overexpression (pCR4-TOPO-VARS1) and control vector plasmids 179 

were purchased from Miaoling Company (Miaoling, Wuhan, China) and the small in-180 

terfering RNAs (siRNAs) targeting VARS1 and the siRNA control were purchased from 181 

RiboBio (Guangzhou, China). The sequences of the VARS1-targeting siRNAs were as 182 

follows: GGAAACGCTCCCTGTCACAAA (VARS1 siRNA1) and GCCGGATCTG-183 

GAATAATGTGA (VARS1 siRNA2). For transient transfection, A375 and SK-MEL-184 

28 cells were transfected with overexpression plasmid or siRNAs, respectively, using 185 

transfection reagents (Lipofectamine 3000, Invitrogen, CA, USA) for 48 h, followed 186 

by further functional assays. 187 

 188 

Quantitative real-time PCR (qRT-PCR) and western blotting 189 

Total RNA extraction and qRT-PCR were conducted as previously described64. The 190 

qRT-PCR forward and reverse primer sequences were as follows: (1) β-actin, 191 

CTCGCCTTTGCCGATCC and TTCTCCATGTCGTCCCAGTT; and (2) VARS1, 192 

CCGTGCTAGGAGAAGTGGTT and TCTCTGGTTTTGGTTTCTTCTCCC, respec-193 

tively. The western blotting was performed as previously described (36) with primary 194 

antibodies against VARS1 (WH0007407M1, Sigma, Germany) and α-tubulin (A11126, 195 

Invitrogen, CA, USA). 196 

 197 

Transwell migration and invasion assays 198 



The migration and invasion assays were performed as previously described64. After 199 

cleaning the cells on the top of the insert, cells growing through the porous membrane 200 

were photographed with an inverted light microscope (×100). The relative numbers of 201 

migrating and invasive cells were calculated using ImageJ (ImageJ National Institutes 202 

of Health, USA). 203 

 204 

Flow cytometry 205 

THP1 cells were treated with 320 nM phorbol-12-myristate-13-acetate (PMA) for 6 h 206 

and differentiated into macrophages, then maintained in the medium with PMA for 16 207 

h to generate M0 cells as described before17, 37, 52, 63. To analyze the influence of VARS1 208 

on macrophage polarization, we collected the culture supernatants of VARS1-overex-209 

pressing A375 cells at 24 h. For the CM collection method, we first seeded equal num-210 

bers (1 million cells) of VARS1-overexpressed and control cells separately in 100 mm 211 

tissue culture dishes with complete medium. When cells have grown to 70% to 80% 212 

confluency, replace the medium with fresh serum-free medium. After 24 hours of cell 213 

culture, CM was collected and passed through a 0.22 µm filter (Millipore). Then we 214 

added the supernatant to THP-1 cell culture medium and continue to culture M0 THP1 215 

cells. After 4 days, the THP1 cells were harvested and stained with CD86 (#374202, 216 

BioLegend) and CD206 (#321102, BioLegend). After 45-min incubation on ice, the 217 

cells were washed three times with phosphate-buffered saline (PBS) buffer and resus-218 

pended in fluorescence-activated cell sorting (FACS) buffer (2% FBS in PBS buffer) 219 

for flow cytometric analysis. 220 



 221 

Analysis of the immunotherapy response 222 

We integrated two datasets of patients with melanoma treated with anti-PD-1 223 

(GSE78220 and GSE91061). Further analyses were performed only on treatment-naïve 224 

patients. Then, the immunotherapy response was predicted using the SubMap online 225 

tool30. 226 

 227 

Statistical analysis 228 

Survival differences between groups were assessed using Kaplan-Meier curves and log-229 

rank tests. Prognostic factors were determined with univariate and multivariate Cox 230 

regression analyses. Correlation coefficients were calculated by Pearson and Spearman 231 

correlation analyses. Normal and non-normal variables were compared using the un-232 

paired Student t-test and the Mann-Whitney U test, respectively. One-way analysis of 233 

variance and the Kruskal-Wallis test were used as parametric and nonparametric meth-234 

ods, respectively, for comparing >2 groups. Genes with differential mutations and dif-235 

ferential copy number losses and gains were examined with chi-square and Fisher’s 236 

exact texts. The statistical analysis was performed using R software and values repre-237 

sent the mean ± standard deviation. P < 0.05 was considered statistically significant. 238 

 239 

Results 240 

Identification of M2-like TAM-related cluster 241 

First, we used the CIBERSORT algorithm to assess the fraction of immune cell 242 



infiltration in patients. In TCGA and GSE98394 datasets, patients with a higher propor-243 

tion of M2 macrophage infiltration had worse prognosis (Figure 1A and Figure S1A). 244 

Considering that more M2 macrophages appeared to be associated with poorer progno-245 

sis and CD8 T cell infiltration, we performed WGCNA to detect the module related to 246 

CD8 T cell and M2 macrophage infiltration (Figure S1D). We select the soft threshold 247 

power β = 5 (scale-free R2 = 0.90) to construct a scale-free network (Figures S1B, S1C). 248 

The heatmap demonstrates that the yellow module was negatively and posi-249 

tively correlated with the infiltration of CD8+ T cells and M2 macrophages, respec-250 

tively, in TCGA-SKCM (Figure 1B). We used the genes in the yellow module and sur-251 

vival data in TCGA-SKCM dataset to perform univariate Cox regression analysis, and 252 

125 genes were associated with OS in TCGA-SKCM. We used the R ConsensusClus-253 

terPlus package for consistent clustering in TCGA-SKCM dataset based on the 125 254 

prognostic genes and identified two clusters: Cluster 1 (319 cases) and Cluster 2 (148 255 

cases) (Figure 1C and Figure S1E, S1F). Principal component analysis also suggested 256 

that these two populations were distinct groups (Figure S1G). Cluster 1 had worse OS 257 

outcomes than Cluster 2 (log-rank p = 0.0071, Figure 1D). 258 

 259 

Functional and multi-omics analyses 260 

To demonstrate signaling pathway activation in each cluster, we calculated the GSVA 261 

enrichment scores using Kyoto Encyclopedia of Genes and Genomes (KEGG) signal-262 

ing pathway gene sets in MSigDB v7.4. Figure 2A depicts the top 20 enriched pathways 263 

in each cluster. In comparison with Cluster 2, Cluster 1 was characterized by the lack 264 



of immune-related pathways, such as T cell receptor signaling pathways. A previous 265 

study divided TCGA-SKCM tumors into three subtypes1: (1) immune, (2) keratin, and 266 

(3) MITF-low. We found that Cluster 1 contained a higher proportion of the keratin 267 

subtype (57% vs. 13%) and a lower proportion of the immune subtype (34.7% vs. 268 

56.2%) than Cluster 2 (Figure 2B). 269 

GSEA indicated that the M2 macrophage pathway was enriched in Cluster 1 270 

(Figure 2C). Examination of the differential expression of immune checkpoint genes 271 

revealed that Cluster 2 demonstrated higher immune checkpoint-related gene expres-272 

sion compared with Cluster 1 (Figure 2D). To investigate mutations in each cluster, we 273 

highlighted the top 20 significantly mutated genes (SMGs) in the two clusters with a 274 

waterfall plot (Figure 3A, 3B). The two clusters shared most of the SMGs. However, 275 

Cluster 1 contained unique SMGs, including XIRP2 (31%), FAT4 (31%), USH2A (30%), 276 

and ANK3 (29%) while Cluster 2 contained unique SMGs that included FLG (40%), 277 

APOB (40%), and CSMD2 (37%). 278 

A recent prospective study found that higher tumor mutation burden (TMB) is 279 

associated with better immunotherapy response4. Cluster 2 samples demonstrated 280 

higher TMB severity than Cluster 1 samples (Figure S2A). We used GISTIC 2.0 to 281 

analyze the somatic copy number variation (SCNV) and summarized the amplified and 282 

deleted areas of Cluster 1 and Cluster 2. Cluster 1 contained a total of 56 focal deletion 283 

peaks and 69 focal amplification peaks, while Cluster 2 contained 37 focal deletion 284 

peaks and 28 focal amplification peaks (Figure 4A, 4B). Examination of the frequency 285 

of immune checkpoint gene amplification or deletion in each subtype revealed that 286 



Cluster 2 contained more amplification of immune checkpoint (VTCN1, TNFRSF fam-287 

ily) and effector T cell function genes (GZMK, GZMA, IFNG) while Cluster 1 had more 288 

deletions (VTCN1, ADORA2A, TJP1, IDO1, HAVCR2) (Figure 4A, 4B). We used the R 289 

ChAMP package57 with FDR < 0.05 to analyze the methylation differences in the two 290 

clusters and obtained 28,870 differentially methylated probes (DMPs) between Cluster 291 

1 and Cluster 2. Interestingly, CD8A and HAVCR2 of Cluster 1 had increased methyla-292 

tion levels than that in Cluster 2 (Figure 4C). 293 

 294 

Construction of the M2 macrophage cluster-related prognostic model 295 

We explored the DEGs between the two clusters to construct a prognostic model (Figure 296 

5A). First, we performed univariate Cox analysis on the DEGs and obtained 3390 genes 297 

with prognostic significance. Then, we performed lasso regression and multivariate 298 

Cox analysis based on the 3390 genes to construct a prognostic model in TCGA-SKCM 299 

dataset (Figure S2B, S2C). The risk score was calculated as follows: 0.323×ATP13A5 300 

+ 0.465×C1orf105 + 0.195×TM6SF2 + 0.151×HEYL + 0.146×PTK6 + 0.065×KIT + 301 

0.049×ENTHD1 – 0.209×SLC18A1 – 0.201×ZMAT1 – 0.158×CD14. Then, TCGA-302 

SKCM patients were divided into high- and low-risk groups based on their risk scores. 303 

Patients with higher risk scores had worse OS prognosis, and Cluster 1 patients had 304 

higher risk scores (Figure 5B, 5C). 305 

Time-dependent AUC and the AUCs at 1 (0.70), 2 (0.74), 3 (0.72), and 5 (0.74) 306 

years suggested that the M2 macrophage cluster-related risk score had potential value 307 

for predicting the OS of patients with melanoma in TCGA datasets (Figure 5D and 308 



Figure S2D). To verify the prognostic significance of the model, we used the same 309 

model score threshold to calculate the risk score in a validation cohort (GSE65904), 310 

which yielded a similar result, where patients with higher risk scores had worse OS, 311 

and the risk score had prognostic value (Figure 5E, 5F and Figure S2E). The risk score 312 

was identified as an independent prognostic factor in both TCGA and GSE65904 da-313 

tasets (Table S1). 314 

 315 

Differences in immune cell infiltration and immune gene expression between high- and 316 

low-risk groups 317 

The risk score played an important role in melanoma progression. To assess the 318 

influence of the M2 macrophage cluster-related risk score on the tumor microenviron-319 

ment (TME), we compared the immune cell infiltration between the high and low score 320 

groups. Patients with high risk scores had increased M2 macrophage infiltration and 321 

decreased CD8 T cell infiltration compared to patients with low risk scores (Figure 5G). 322 

We also explored differences in the expression of HLA family genes and immune check-323 

point markers in the high and low risk score groups in TCGA and GEO datasets. The 324 

high risk score group had significantly increased expression of the antigen-presentation 325 

and immune checkpoint-related genes in comparison to the low risk score group of 326 

TCGA datasets (Figure 6A–C). Consistent with these results, analysis of GSE65904 327 

sample data yielded similar results (Figure S3A–C). Furthermore, we applied our M2 328 

macrophage cluster-related model to the merged datasets (GSE78220 and GSE91061) 329 

with available immunotherapy outcomes and examined the risk score of melanoma 330 



patients. To further observe the different response to immunotherapy in high risk score 331 

and low risk score groups, we found that patients with high risk score had higher pro-332 

portion of non-responders to immunotherapy compared to patients with low risk score 333 

(64% vs 28%). (Figure 6D)  334 

 335 

VARS1 as a hub gene of the yellow module and its role in melanoma progression and 336 

macrophage polarization 337 

We explored the hub genes in the yellow module. We used the 275 genes in the yellow 338 

module to construct a PPI network based on the STRING database results. Then, the 339 

top hub genes were determined via the Closeness, Stress, and Radiality algorithms in 340 

the Cytoscape cytoHubba plugin (Figure S4). The hub gene essential for melanoma cell 341 

growth was determined with DepMap (https://depmap.org/portal/download/), a 342 

CRISPR-based database for genome-wide loss-of-function screening. Only VARS1 was 343 

identified by intersecting the gene sets obtained from these four methods (Figure 7A). 344 

In TCGA dataset, high VARS1 expression correlated with shorter OS (Figure 7B). Fur-345 

thermore, we explored which cell type mainly expressed VARS1 in melanoma. The 346 

result of single-cell RNA-seq of the GSE115978 dataset demonstrated that VARS1 was 347 

expressed predominantly in tumor cells but not in stromal and immune cells (Figure 348 

7C). Additionally, high risk score patients had higher VARS1 expression levels than low 349 

risk score patients (Figure S5A). 350 

We also examined whether VARS1 played an important role in melanoma pro-351 

gression and constructed VARS1-overexpressing and VARS1 knockdown A375 and SK-352 

https://depmap.org/portal/download/


MEL-28 cell lines (Figure S5B). VARS1 overexpression promoted the migration and 353 

invasive ability of the cells while VARS1 suppression significantly decreased it (Figure 354 

7D–F). GSEA indicated that high VARS1 levels positively correlated with the metasta-355 

sis-related pathway in TCGA-SKCM dataset (Figure 7G). Furthermore, a search of the 356 

Human Protein Atlas (HPA) database58, 59 showed that VARS1 expression was increased 357 

in primary melanoma compared to normal skin tissue, and further increased in meta-358 

static melanoma (Figure S5D). 359 

 360 

VARS1 negatively correlated with immune infiltration and induced M2 macrophage po-361 

larization 362 

To investigate the VARS1-related pathways, we divided TCGA-SKCM dataset patients 363 

into two groups based on the median VARS1 gene expression. GSVA of the KEGG 364 

pathways revealed that the immune-related pathways, such as the T cell receptor path-365 

way, were enriched in patients with low VARS1 expression, while tumor growth path-366 

ways such as the cell cycle pathway and the mTOR pathway were enriched in patients 367 

with high VARS1 expression (Figure 8A). 368 

We examined the correlation between VARS1 expression and the CIBERSORT 369 

immune cell infiltration score. VARS1 expression positively correlated with intra-370 

tumoral M2 macrophage infiltration and negatively correlated with M1 macrophage 371 

and CD8 T cell infiltration (Figure 8B, 8C). To elucidate the role of VARS1 in M2 372 

macrophage polarization, THP1 cells were treated with the supernatant of A375 cells 373 

line overexpressing VARS1 (VARS1-A375) and A375 vector (vector-A375) cell lines 374 



and detected the M1 and M2 macrophage markers. Flow cytometry revealed a 3-fold 375 

increase in the expression of the M2 macrophage marker CD206 in THP1 cells treated 376 

with VARS1-A375 supernatants compared with those treated with vector-A375-super-377 

natants, while the expression of CD86, an M1 macrophage marker, decreased by 15.2% 378 

(Figure 8D). Taken together, these results indicate that VARS1 may play important roles 379 

in M2 macrophage infiltration and polarization. 380 

 381 

High VARS1 expression correlated with low CD8 T cell infiltration and predicted the 382 

poor clinical benefit of immune checkpoint blockade 383 

High VARS1 expression correlated negatively with CD8 T cell infiltration in TCGA-384 

SKCM dataset (Figure 9A). The expression of many immune checkpoint genes was 385 

negatively associated with VARS1 expression in both TCGA and GSE65904 datasets 386 

(Figure 9B and Figure S6A). Previous studies have shown that TGF-β1 is involved in 387 

PD-1 immunotherapy resistance and M2 macrophage polarization11, 66. Here, the en-388 

zyme-linked immunosorbent assay demonstrated that the supernatant of VARS1-over-389 

expressing cells had significantly increased TGF-β1 concentrations compared to that of 390 

vector cells (Figure S5C). We performed SubMap analysis to assess the anti-PD-1 im-391 

munotherapy response in high- and low-VARS1 expression patients with melanoma. 392 

The results demonstrated that low VARS1 expression predicted partial response (PR) to 393 

anti-PD-1 immunotherapy whereas high VARS1 expression predicted resistance (SD) 394 

to anti-PD-1 immunotherapy (Figure 9C). To explore the suppressive role of VARS1 in 395 

immune regulation, we used different algorithms to investigate the correlation between 396 



VARS1 gene expression and CD8 T cell infiltration in Pan-TCGA datasets. The heatmap 397 

showed that VARS1 gene expression and CD8 T cell infiltration were inversely corre-398 

lated in most cancers (Figure 9D). 399 

GSEA indicated that many immune-related pathways, such as the T cell-medi-400 

ated cytotoxicity pathway, were enriched in the patients with high VARS1 expression in 401 

70% of cancer types (Figure 9E). Finally, we evaluated the association between VARS1 402 

and OS across 33 cancer types. High VARS1 expression was correlated with poorer 403 

survival in six cancer types (Figure S6B), including KICH (hazard ratio [HR] = 2.80), 404 

MESO (HR = 1.74), SKCM (HR = 1.32), SARC (HR = 2.25), LAML (HR = 1.69), and 405 

CESC (HR = 1.49) and with better survival in READ (HR = 0.47). These results suggest 406 

that VARS1 may have predictive value for patient prognosis and PD-1 immunotherapy 407 

efficacy. 408 

 409 

Discussion 410 

Melanoma has been recognized as the most aggressive type of skin cancer and is par-411 

ticularly responsive to immunotherapy such as immune checkpoint blockade with 412 

CTLA4 and PD-1 antagonists38. Immunotherapy can improve patient outcomes obvi-413 

ously, especially for patients with stage IV melanoma, but the mortality rates would 414 

become quite high once patients develop immunotherapy resistance2, 53, 54. Nevertheless, 415 

the goal of addressing and predicting immunotherapy response in melanoma has been 416 

reached. Considering that numerous studies have demonstrated the importance of 417 

TAMs in clinical outcome and immunotherapy resistance in melanoma, we applied 418 



WGCNA to identify a M2-like TAM module in melanoma for the first time and examine 419 

the reliability of M2-like TAMs as a prognostic marker in melanoma and in predicting 420 

immunotherapy response. 421 

Recent studies have demonstrated the prognostic importance of TAMs in vari-422 

ous cancers. The presence of TAMs, mainly M2-like TAMs, is not only correlated with 423 

poor outcome in various tumors, but is also associated with the generation of an immu-424 

nosuppressive TME16, 22, 46. As an important source of inflammatory cytokines and 425 

growth factors, M2-like TAMs support angiogenesis, which results in the promotion of 426 

tumor cell proliferation and survival9, 21, 51. A previous study reported that TAM-derived 427 

VEGFA enhanced vascular permeability, thereby facilitating cancer cell intravasation 428 

and metastasis19. Moreover, M2-like TAMs express PD-L1, a major negative regulatory 429 

ligand suppressing cytotoxic T lymphocyte (CTL) activation in the TME. In some can-430 

cers, M2-like TAM-derived PD-L1 is more effective than cancer cell-derived PD-L1 431 

for suppressing CTL function27, 50. Recent studies have demonstrated that M2-like 432 

TAM-derived factors, such as interleukin (IL)-6, IL-10, and milk fat globule-epidermal 433 

growth factor VIII (MFG-E8), can suppress naïve T cell proliferation, promote car-434 

boplatin resistance, and enhance tumor growth23, 39, 61. Furthermore, depleting or down-435 

regulating M2-TAMs suppressed tumor growth by inactivating CCL2 and/or CCR2 sig-436 

naling55. However, a M2-like TAM-related prognostic model in melanoma has not been 437 

explored. 438 

Based on the importance of M2-like TAMs to clinical outcome and the immu-439 

nosuppressive TME, we inferred that a gene module associated with M2-like TAMs in 440 



melanoma could be applied to establish a prognostic model that could provide predic-441 

tive value in clinical outcome and immunotherapy response in melanoma. We first val-442 

idated that the high score of M2-like macrophages is significantly associated with 443 

poorer survival in TCGA and GSE98394 datasets. To examine the reliability of M2-like 444 

TAMs as a prognostic marker in melanoma, two clusters were grouped by genes in a 445 

M2-like TAM-related module and demonstrated different OS and clinical features. 446 

With poorer OS, Cluster 1 was characterized by enrichment of the M2 macro-447 

phage pathway and the lack of immune response pathways, such as the T cell receptor 448 

signaling pathway, complement and coagulation cascades, and leukocyte transendothe-449 

lial migration. The activation of these immune response pathways is associated with 450 

good immunotherapy response and good clinical outcome10, 15, 18, 54, indicating that the 451 

lack of immune response pathways was one of the major leading causes of the poorer 452 

outcome in Cluster 1 as compared with Cluster 2. Furthermore, the transcriptomic clas-453 

sification of melanoma includes the immune, keratin, and MITF-low subtypes. Com-454 

pared with Cluster 2, Cluster 1 had a lower proportion of immune-subtype melanoma, 455 

which is associated with overexpression of the immune-related genes and more favor-456 

able post-accession survival. Moreover, Cluster 1 also contained a higher proportion of 457 

the keratin subtype, which exhibits worse outcome when compared with the immune 458 

and MITF-low subtypes. 459 

As an emerging predictive biomarker of cancer immunotherapy, elevated TMB 460 

can be associated with increased clinical benefit from immune checkpoint blockade 461 

therapies4. Interestingly, Cluster 2 had higher TMB severity than Cluster 1. Recent 462 



studies have also shown that checkpoint blockade immunotherapy response is corre-463 

lated with the immune checkpoint gene and ligand receptor expression level45. Cluster 464 

2 had more amplifications of the immune checkpoint and effector T cell function genes, 465 

while Cluster 1 had more deletions of the genes. This indicated that Cluster 1 had more 466 

decreased benefit from immunotherapy compared to Cluster 2. Our results suggest that 467 

the identified M2-like TAM module is reliable for providing meaningful prognostic 468 

value in the clinical outcome and immunotherapy response in melanoma. 469 

We further identified a M2 macrophage cluster-related prognostic model and 470 

generated a prognostic risk score based on the DEGs between the M2-like TAM-related 471 

clusters. In TCGA cohort, Cluster 1 had a significantly higher risk score than Cluster 2, 472 

and OS was significantly decreased in the high risk score group compared to the low 473 

risk score group. Moreover, a higher risk score was associated with a series of tumor 474 

immunogenic factors. In our study, the high risk score group demonstrated less CD8+ 475 

T cell infiltration and more M2 macrophage infiltration compared to the low risk score 476 

group. Previous studies have proven that inhibiting antigen presentation is associated 477 

with immune evasion. The antitumor immune response is mainly centered on antigen 478 

presentation. Our result demonstrated that the high risk score group had significantly 479 

suppressed antigen presentation compared to the low risk score group, indicating that a 480 

higher risk score was associated with lower immunotherapy response. Furthermore, our 481 

findings also demonstrate that compared with the low risk score group, the high risk 482 

score group had decreased expression of the immune checkpoint genes and the majority 483 

of ligand receptors, including CCL5, CXCL9, and IFNG. This observation prompted 484 



us to examine the prognostic value of this risk score in immunotherapy outcomes: there 485 

was a higher percentage of SD/progressive disease in high-risk patients than in low-risk 486 

patients. Hence, the risk score based on the M2-like TAM-related prognostic model 487 

represented an independent prognosticator of OS and immunotherapy response in mel-488 

anoma. 489 

With the aim of identifying a potential biomarker for predicting OS and immu-490 

notherapy response in melanoma, we identified the top hub genes in the specific M2-491 

like TAM module via three different algorithms. Interestingly, only VARS1 was identi-492 

fied after intersection between these hub genes and the melanoma cell growth-related 493 

genes in the DepMap database, indicating that VARS1 was associated with M2-like 494 

TAM polarization and melanoma tumor cell growth. Moreover, our results showed that 495 

VARS1 was mainly expressed by tumor cells and that high VARS1 expression was sig-496 

nificantly associated with poor OS and the metastasis-related pathway in TCGA-SKCM 497 

dataset. As an ARS member, VARS1 plays an important role in protein synthesis. Re-498 

cent studies have shown that ARSs are involved in various physiological and patholog-499 

ical processes, especially tumorigenesis, and could be potential biomarkers and thera-500 

peutic targets in cancer treatment25. However, only one study reported that VARS1-501 

bearing extracellular vesicles were associated with worse clinical outcome in mela-502 

noma60. The role of VARS1 in melanoma remains unclear, which prompted our explo-503 

ration of the function of VARS1 as a potential prognostic biomarker in melanoma. 504 

Our in vitro experiments demonstrated that A375 and SK-MEL-28 cell migra-505 

tion and invasive ability was significantly increased after VARS1 was overexpressed, 506 



while VARS1 knockdown decreased it. Moreover, high VARS1 expression was associ-507 

ated with low immune-related signaling pathway enrichment, low immune checkpoint 508 

expression, and low CD8 T cell infiltration and predicted anti-PD-1 immunotherapy 509 

resistance, which indicated that the upregulation of VARS1 can be associated with low 510 

immunotherapy response and poor clinical outcome in melanoma. Previous studies 511 

have also shown that the tumor-suppressing effect of the TGF-β1 signaling pathway has 512 

an essential function in poor immunotherapy response11. Our in vitro experiments 513 

demonstrated that VARS1 upregulated TGF-β1 expression in tumor cells and the M2 514 

macrophage marker CD206. In addition, our analysis of the Pan-TCGA datasets sup-515 

ported the idea that high VARS1 expression was correlated with poor CD8 T cell infil-516 

tration in most cancers. Taken together, our results suggest that, as the hub gene related 517 

to the M2-like macrophage module, VARS1 exerts an immunosuppressive effect on mel-518 

anoma progression and is a potential predictive biomarker of clinical outcome and im-519 

munotherapy response in melanoma, which requires further investigation in prospective 520 

studies and larger populations. 521 

Our study has potential weaknesses. It is a retrospective study and requires a 522 

multi-center cohort study to validate the predictive value of this M2-like TAM-related 523 

prognostic model and VARS1 as a predictive biomarker of anti-PD-1 immunotherapy 524 

response in melanoma. In addition, further animal experiments are necessary for ex-525 

ploring the functional role of VARS1 in melanoma, which can help provide more robust 526 

clues to guide clinical application. 527 

 528 



Conclusion 529 

Our studies identified a M2-like TAM-related prognostic model for predicting OS and 530 

immunotherapy resistance in melanoma and explored the potential predictive value of 531 

VARS1 in melanoma immunotherapy. We hope that our research widens the current un-532 

derstanding of the role of M2-like TAMs in the biology of melanoma and prognosis 533 

prediction and that VARS1 can be a novel predictive biomarker of clinical outcome and 534 

immunotherapy response in melanoma. 535 
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 825 

Figures and legends 826 

Figure 1 Identification of M2-like TAMs related cluster. (A) Kaplan–Meier analysis 827 

showing the correlations between M2-like TAMs infiltration and overall survival (OS) 828 

in TCGA SKCM cohorts. Patients were grouped into “high” or “low” groups based on 829 

the median CIBERSORT-based M2 macrophages score. (B) Weighted correlation net-830 

work analysis (WGCNA) identifies M2-like TAMs and CD8 T cells infiltration corre-831 

lated modules. (C) Consensus clustering showed that 2 clusters were most stable. (D) 832 

Kaplan-Meier survival analysis was performed to analyze the difference in overall sur-833 

vival (OS) of the two clusters. 834 

 835 

Figure 2 Functional analysis and differential expression analysis of two clusters. 836 

(A) The top 20 enriched KEGG pathways for each cluster were explored by GSVA 837 

analysis. (B) Percentage of patients with different TCGA melanoma subtypes in differ-838 

ent clusters. (C) GSEA analysis showing that the correlation of clusters with M2 mac-839 

rophage gene sets. (D) The differences in expression of immune checkpoint-related 840 

genes between the two clusters. ‘*’ represents p-value ≤ 0.05, ‘**’ represents p-841 

value ≤ 0.01, ‘***’ represents p-value ≤ 0.001, N.S indicates not significant (p > 842 

0.05). 843 



 844 

Figure 3 The mutation analysis of two clusters. The waterfall plot showing the top 845 

20 genes with mutation frequency of Cluster 1 (A) and Cluster 2 (B). Each column 846 

represents an individual patient. The upper histogram is the total tumor mutation burden 847 

(TMB), and the numbers on the right are the mutation frequencies of each gene. The 848 

bar graph on the right is the proportion of each mutation type. 849 

 850 

Figure 4 multi-omics analysis of two clusters. GISTIC 2.0 analysis determining the 851 

statistically significant amplifications and deletions in Cluster1 (A) and Cluster2 (B). 852 

Statistically significant gains (red) and losses (blue) of chromosomal locations are 853 

shown. The q-value, which characterize statistical significance, are shown below the 854 

graph. Areas with q-values< 0.25 (green lines) are considered significantly changed. 855 

These peak regions were annotated with known immune checkpoint related genes. (C) 856 

Volcano plots show alterations in DNA methylation that are statistically significant be-857 

tween the two clusters. The right side shows different proportions of genomic features. 858 

 859 

Figure 5 Construction of the M2 macrophage cluster Related Prognostic Model. 860 

(A) Volcano plot showing differential expressed genes in two clusters. (B) The differ-861 

ences in risk scores of prognostic models between two clusters. The difference in over-862 

all survival between low-risk score and high-risk score groups in TCGA melanoma co-863 

hort (C) and GSE65904 melanoma cohort (E). Patients were grouped into “high” or 864 

“low” groups based on the median risk score. Time-dependent areas under the curve 865 



(AUC) values in TCGA (D) and GSE65904 (F). (G) The comparison of the immune 866 

cells infiltration between high-risk and low-risk groups.  867 

 868 

Figure 6 Differences in immune check point related gene and response to anti-PD-869 

1 immunotherapy between high and low risk groups. Boxplots displayed the differ-870 

ences in the expression of antigen presentation (A), immune check point genes (B) and 871 

several ligand-receptor (C) in TCGA melanoma cohort. ‘*’ represents p-value ≤ 0.05, 872 

‘**’ represents p-value ≤ 0.01, ‘***’ represents p-value ≤ 0.001, N.S indicates not 873 

significant (p > 0.05). (D) The proportion of patients with response to anti-PD-1 immu-874 

notherapy in different risk group. SD: stable disease; PD: progressive disease; CR: com-875 

plete response; PR: partial response. 876 

 877 

Figure 7 VARS1 as a Hub Gene and its Role in Melanoma progression. (A) Venn 878 

diagram showing the intersection of hub genes of the M2 infiltration-related module 879 

and genes critical for the growth of melanoma human cell lines in the DepMap database. 880 

(B) Overall survival of TCGA melanoma patients with high and low VARS1 expression 881 

measured by Kaplan–Meier analysis. Patients were grouped into “high” or “low” 882 

groups based on the median expression of VARS1. (C) Analysis of VARS1 expression 883 

in various cell types in single-cell sequencing datasets. (D-F) Overexpressing VARS1 884 

promoted migration and invasion abilities in SK-MEL-28 cells and A375 cells, while 885 

silencing VARS1 suppressed the abilities. ‘*’ represents p-value ≤ 0.05. (G) GSEA 886 

analysis showing that the correlation of VARS1 expression with metastasis-related gene 887 



sets. 888 

 889 

Figure 8 The role of VARS1 in immune cell infiltration and macrophage polariza-890 

tion. (A) KEGG pathway enrichment scores between high and low VARS1 expression 891 

groups analyzed using GSVA and showing the top 20 differential pathways. Patients 892 

were grouped into “high” or “low” groups based on the median expression of VARS1. 893 

(B) The graph shows the correlation between VARS1 expression and immune cell in-894 

filtration based on the output of Cibersort analysis. The correlation coefficients were 895 

calculated by the Spearman rank correlation test. (C) The correlation of VARS1 expres-896 

sion and M2-like TAMs infiltration. (D) THP-1 cells were treated with supernatant of 897 

VARS1-overexpressing A375 cells and then the polarization of THP-1 was analyzed by 898 

flow cytometry. ‘*’ represents p-value ≤ 0.05. 899 

 900 

Figure 9 High expression of VARS1 correlates with low CD8 T cell infiltration and 901 

predict the poor clinical benefit of ICB. (A) The correlation of VARS1 expression 902 

and M2-like TAMs infiltration. (B) Correlation between the expression of VARS1 and 903 

several known immune checkpoint genes in the TCGA dataset. The correlation coeffi-904 

cients were calculated by the Pearson correlation test. (C) The submap tool analysis 905 

showed that VARS1 expression could predict the response to anti-PD-1 treatment. The 906 

p values obtained were adjusted by the Bonferroni method. (D) Pan-cancer analysis 907 

investigating the correlations between VARS1 expression and CD8 T cell infiltration 908 

across 32 cancer types from the TCGA dataset. The correlation coefficients were 909 



calculated by the Spearman rank correlation test. (E) Pan-cancer GSEA analysis for 910 

immune response related pathway between high- and low-VARS1 tumor tissues. NES, 911 

normalized enrichment score; FDR, false discovery rate. 912 


