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Patient characteristics and scRNA-seq strategy  

Bone marrow mononuclear cells (BMNCs) were obtained from 9 healthy donors (HDs) and 15 newly 

diagnosed WM patients. The clinical and biological characteristics of 15 WM patients are listed in Suppl. 

Table 1. This study was approved by the Institutional Ethics Review Boards of the Institute of Hematology 

and Blood Diseases Hospital, Chinese Academy of Medical Sciences (China). Written informed consent 

was obtained from patients and HDs before sample collection. 

Sample collection and single cell preparation 

BMMCs were isolated by Ficoll (MERCK) density-gradient centrifugation and cryopreserved at -80°C for 

less than five days until processed. The number and viability of cells was measured using a TC20 

automated cell counter (Biorad). Dead cells (cell viability less than 80%) were removed by magnetic bead 

purification (Miltenyi Biotech) according to the manufacturer’s protocol before scRNA-seq.  

Single-cell RNA library preparation and sequencing  

Chromium single-cell sequencing technology was performed following the manufacturer’s protocol (10× 

Genomics). Library construction procedures were performed using the Chromium Single Cell 3’ Library, 

Gel Bead & Multiplex Kit (10× Genomics, V2), strictly following the manufacturer’s instructions. Then the 

cell suspensions were loaded onto the 10x Chromium Single Cell Controller to generate single-cell gel 

bead-in-emulsions (GEMs), and we performed barcoded reverse transcription of RNA within a single cell 

using a Verity Thermal Cycler (Life Technologies). Through reverse transcription in a single GEM, the 

barcodes were added to the RNAs released from lysed cells; then fragmentation, end repair, polyA tailing, 

and adaptor ligation were achieved according to the standard protocol. The cDNA purification and size 

selection were performed by SPRI select beads (Beckman Coulter), and the quality was evaluated using 

the Agilent Bioanalyzer. Finally, the libraries were sequenced on an MGISEQ-2000 sequencer as 150 bp 

paired-end reads by Beijing Genomics Institute (BGI, Shenzhen, China).  

scRNA-seq data processing 

The R package Seurat (version 3) was used for data normalization, scaling, dimensional reduction, 

clustering, differential expression analysis, and most visualizations 1,2. The Cell Ranger Software Suite 

(version 3.0.2; 10x Genomics) was used to perform sample de-multiplexing, alignment, barcode 

processing, and unique molecular identifier (UMI) counting. Briefly, sequencing reads were aligned against 

the GRCh38 human reference genome with STAR, and count matrices were built from the resulting BAM 



files 3. Quality of cells was then assessed based on four metrics step by step: (i) The number of detected 

genes per cell; (ii) The number of detected UMI per cell; (iii) The proportion of mitochondrial gene counts; 

(iv) The proportion of rRNA genes counts (RNA18S5 or RNA28S5). The following criteria were then applied 

to filter low-quality cells: gene number < 200 or > 6,000, UMI < 1000, ribosomal gene proportion > 0.4 or 

mitochondrial gene proportion > 0.1. A total of 44,770 cells passing the quality control were incorporated 

into the further analysis. For the integration of the cells from different samples, the Gene-cell matrix of all 

samples was integrated with Seurat to remove batch effects across different samples. In parameter 

settings, the first 30 dimensions of principal component analysis (PCA) were used. 

Dimensionality reduction, clustering of cells, and visualization 

The filtered gene-cell matrix was first normalized using “LogNormalize” methods in Seurat v.3 with default 

parameters. The top 2,000 variable genes were then identified using the “vst” method in the Seurat 

“FindVariableFeatures” function. PCA was performed using the top 2,000 variable genes. Graph-based 

clustering was performed on the PCA-reduced data for clustering analysis with Seurat v.3. The resolution 

was set to 0.5 to obtain a more refined result. Briefly, the first 50 PCs of the integrated gene-cell matrix 

were used to construct a shared nearest-neighbor graph (SNN; “FindNeighbors” in Seurat), and this SNN 

was used to cluster the dataset (“FindClusters”) using a graph-based modularity-optimization algorithm of 

the Louvain method for community detection. Then UMAP was performed on the top 30 principal 

components for visualizing the cells. 

Cell cluster annotation with specific maker genes expression 

“FindAllMarkers” in Seurat (Wilcoxon rank-sum test) was used to perform differential gene expression 

analysis. For each cluster, marker genes were generated relative to all other cells. Cluster annotation was 

confirmed using the R package SingleR, which compares the transcriptome of every single cell to reference 

datasets to determine cellular identity 4. 

Single cell copy number variations (CNVs) calling 

To identify malignant cells with clonal large-scale chromosomal CNVs, we used the inferCNV R package 

to infer the genetic profiles of each cell based on the average expression of large genes sets (101 genes) 

in each chromosomal region of the tumor genome compared to normal cells 5. All B-cell-lineage cells of 

WM were input as interrogation group and normal B cells and plasma cells from HDs were sampled as 

control. Other parameters were set as default. For each cell, gene expression was re-standardized and 

values were limited as -1 to 1. The CNV score of each cell, namely mutation burden was calculated as 



quadratic sum of CNV for each gene. 

DEGs identification and functional enrichment analysis  

Differential gene expression analysis between different sample groups within a cluster was performed 

using “FindMarkers” in Seurat (Wilcoxon rank-sum test). A gene was considered significantly differentially 

expressed if the false discovery rate (FDR) < 0.05. The heat map was then generated using the pheatmap 

R package for filtered DEGs. For pathway analysis, the C2 (curated gene sets) and C5 (ontology gene 

sets) were downloaded from the Molecular Signature Database (MSigDB, 

http://software.broadinstitute.org/gsea/msigdb/index.jsp). Gene set enrichment analysis (GSEA) was 

performed using the Java implementation of GSEA software (version 4.0) 6,7. The Broad Institute Gene Set 

Enrichment Analysis website (www.broad.mit.edu/gsea) provides detailed information about the 

computational method.  

Gene ontology (GO) enrichment analysis on DEGs was performed with R package cluster Profiler (v4.0.3), 

which supports statistical analysis and visualization of functional profiles for genes and gene clusters 8. 

Terms with an adjusted p-value < 0.05 were considered as significantly enriched. Visualization of GO 

pathways of DEGs between IGHM+ and conventional CD8+ T cells was conducted with GOplot package 9. 

The zscore indicates the up- or down-regulation of enriched pathways, which is calculated as follows: 

𝑧𝑠𝑐𝑜𝑟𝑒 =
(𝑢𝑝−𝑑𝑜𝑤𝑛)

√𝑐𝑜𝑢𝑛𝑡
. Count is the number of genes assigned to a term. Whereas up and down are the 

number of assigned genes up-regulated (logFC>0) in the term or down- regulated (logFC<0), respectively. 

In pathway enrichment analysis for the phase gene sets of CD8+ T cell trajectory and DEGs between tumor 

subpopulations and their normal counterparts, Ingenuity Pathway Analysis (IPA) was performed to 

characterize the biological functions of cells. The differentially expressed genes between different cell 

types were uploaded into the IPA software for the core analysis, and identified the canonical pathways, 

diseases and functions, upstream regulators, and gene networks.  

Calculating the proportion of Lambda+ and Kappa+ cells 

The human genome has one kappa constant (IGKC) gene but variable number of lambda constants – 

IGLC1, IGLC2, IGLC3 and IGLC7 are functional isotypes. Let t be a chosen transcript count threshold and 

K the number of cells expressing at least t IGKC transcripts. Further let L be the number of cells expressing 

at least t transcripts of any of three out of the four functional lambda isotypes: IGLC2, IGLC3 and IGLC7 

10. The IGLC1 transcript was not detected in any B cell, probably because complete overlap of its 3’end 



with the IGLL5 gene precludes IGLC1 mRNA quantification with 3’end RNA-Seq assays. The % lambda+ 

cells within a given population was calculated as: 𝐿𝑎𝑚𝑏𝑑𝑎+ =
𝐿

𝐾+𝐿
. t = 1 was chosen. The estimated % of 

lambda+ cells was robust to different values of t ranging between 1 and 5. 

Cell function analysis based on scRNA-seq 

The cell-cycle phase was computationally assigned for each individual cell through the “CellCycleScoring” 

function in Seurat. To determine the proliferation vitality of tumor cells, we labeled each WM subcluster 

with a proliferation index (PI) based on the cell-cycle phase using the following equation: 𝑃𝐼 (%) =

(𝑆+𝐺2𝑀)

(𝐺0
𝐺1+𝑆+𝐺2𝑀)

× 100%. We used cell scores to evaluate the degree to which individual cells expressed a certain 

predefined expression gene set using the “AddModuleScore” function in Seurat with default settings. To 

define metabolism phenotypes in CD8+ T cells in WM and HD, the metabolism signature determined as 

the mean expression of gene signatures involved in glycolysis and tricarboxylic acid (TCA) cycle were 

obtained from PathCards (https://pathcards.genecards.org/). The gene sets associated with the above 

functions were listed in Suppl. Table 2. Besides, we defined naïve, cytotoxic, and exhausted scores for 

CD8+ T cells with 6 naive markers (SELL, CD28, LEF1, TCF7, CCR7, and S1PR1), 8 cytotoxicity 

associated genes (PRF1, IFNG, GNLY, NKG7, GZMB, GZMA, CST7, and TNFSF10), and 7 exhausted 

markers (CTLA4, HAVCR2, LAG3, PDCD1, CD96, CD160, and TIGIT). Cellular transcriptomic 

heterogeneity of samples was accessed by calculating the pair-wised Euclidean distance between single 

cells of the same sample. 

Cell-cell interaction analysis 

CellPhoneDB was used to estimate cell-cell interactions 11,12. The interaction score refers to the total 

average of the mean expression value of a single ligand-receptor partner in the corresponding interacting 

cell type. The expression of any complex output by CellPhoneDB was calculated as the sum of the 

expression of the component genes.  

Cell developmental trajectory 

2D pseudotime-ordered analysis of HSPCs, CD19+CD3+ cells, CD138+CD3+ cells, and malignant WM cells 

was performed using Monocle2 13. The cell lineage trajectory of CD8+ T was inferred by using Monocle3 

14. We excluded MAIT cells according to their distinct development processes relative to other CD8+ cells. 

After the cell trajectories were constructed, differentially expressed genes along the pseudotime were 

detected using the “differentialGeneTest” function. 



Flow cytometry analysis  

Fresh bone marrow aspirates obtained from WM patients and HDs after informed consent were placed in 

ethylenediaminetetraacetic acid (EDTA)-containing tubes and immediately transported to the lab. Fresh 

BMMCs were isolated by Ficoll density-gradient centrifugation and stained with fluorochrome-conjugated 

antibodies for 15 minutes at room temperature. Flow cytometry for BMNCs was performed on a 

FACSCanto II flow cytometer, and the data were analyzed using FlowJo V10 software. Details of the 

antibodies utilized are listed in Suppl. Table 3.  

RNA sequencing and data processing 

We sorted CD19+CD3+ cells and CD19+CD3- cells from BMNCs by FACS AriaIII (BD). The RNA yield was 

determined by Nanodrop technology (Thermo Fisher Scientific), and quality was verified on the Agilent 

2100 bioanalyzer (Agilent Technologies). cDNA libraries from CD19+CD3+ cells and CD19+CD3- were 

sequenced according to the protocols for RNA-Seq. Briefly, the True Seq Stranded mRNA Sample 

Preparation Kit (Illumina) was used, followed by single-ended sequencing on the NextSeq500 Sequencing 

System (Illumina) with a read length of 75 bp. Raw reads were pre-processed using Fast QC software. 

PCR duplicates, reads that only contain adapter, ploy-N, and reads with low quality (score ≤ 5) were 

removed. Clean reads were then used for subsequent analyses. RNA-seq reads were aligned to GRCh38 

using STAR v.2.4.2a and quantified on Gencode v.24. Transcript expression levels were quantified after 

normalizing the count data with the edgeR package 15. Only genes with P-value < 0.05 and | log2(Fold 

change) | > 1 are considered differentially expressed genes. 

Colony-formation assay  

A total of 1,000 CD19+CD3+ cells and 1,000 CD19+CD3- cells were separately plated in triplicate in 1.1 ml 

methylcellulose-based medium (MethoCult™ H4100, StemCell Technologies) per 12-well and incubated 

for 3-4 weeks, replenishing with 10% FBS cell culture medium twice a week. The culture plate was taken 

photo both under inverted microscope and high-content analysis system (Operetta CLS). Colonies 

consisting of more than 40 cells were scored. 

Statistical analysis 

Data analyses were performed with R language and GraphPad Prism 8.0 Software. Statistical significance 

was set at P < 0.05. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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