Additional file 1

Identification of comutation in signaling pathways to predict the clinical outcomes of immunotherapy

Contents:

Figure S1-S7

Table S1-S6

Figure S1. Correlations between co-mutations of signaling pathways and tumor mutational burden, neoantigen load.

(A) Comparison of tumor mutational burden between mutated and wild-type signaling pathways subgroups. (B) Comparison of neoantigen load between mutated and wild-type signaling pathways subgroups. (C) Comparison of tumor mutational burden between SpHe-comut⁺ and SpHe-comut⁻ subgroups. (D) Comparison of neoantigen load between SpHe-comut⁺ and SpHe-comut⁻ subgroups. (E) Frequency of SpHe-comut⁺ in different TCGA cancer types. (F) Frequency of tumor mutational burden in different TCGA cancer types. (G) Frequency of neoantigen load in different TCGA cancer types. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001;

Figure S2. Correlations between SpHe-comut status and Tumor mutational burden or neoantigen load.

(A)-(F) Comparisons of tumor mutational burden and neoantigen load in SpHe-comut⁺ and SpHe-comut⁻ subgroups from the Inova cohort (A), the Rizvi cohort (B), the Miao cohort (C), the Hellmann cohort (D), the Allen & Snyder cohort (E), and the MSKCC cohort (F). ***, p < 0.001; ****, p < 0.0001; ****, p < 0.0001;

Figure S3. Comparison of the objective response rate between the SpHe-comut⁺ and SpHe-comut⁻ groups.

(A) Comparison of proportion of patients with DCB between the SpHe-comut⁺ and SpHe-comut⁻ subgroups from the Hellmann cohort. (B) Comparison of the objective response rate between the SpHe-comut⁺ and SpHe-comut⁻ groups in the Allen & Snyder cohort.

Figure S4. Univariable and multivariable Cox analysis of SpHe-comut status and clinicopathological factors (Age, Sex, and PD-L1 expression) for PFS or OS in the ICBs cohorts.

(A) Univariable and multivariable Cox analyses of SpHe-comut status and clinicopathological factors (Age, Sex) for PFS in the Inova cohort. (B) Univariable and multivariable Cox analyses of SpHe-comut status and clinicopathological factors (Age, Sex, PD-L1 expression) for PFS in the Rizvi cohort. (C) Univariable and multivariable Cox analyses of SpHe-comut status and clinicopathological factors (Age, Sex) for OS in the Miao cohort.

Figure S5. Comparison of performance for predicting ORR among SpHe-comut, DDR-comut and TMB as a predictive biomarker.

(A) Comparison of C-index for predicting ORR among SpHe-comut, DDR-comut and TMB in the Inova cohort (Melanoma), the Rizvi cohort (NSCLC), and the Miao cohort (Pan-cancer). (B) Comparison of AUC for predicting ORR among SpHe-comut, DDR-comut and TMB in the Inova cohort (Melanoma), the Rizvi cohort (NSCLC) and the Miao cohort (Pan-cancer).

Figure S6. Combining SpHe-comut status with DDR-comut status for the prediction of ICB therapy.

(A) Kaplan-Meier estimates of PFS classified by the three indicated subgroups classified by SpHe-comut status and DDR-comut status in the Inova cohort. (B) Proportional representation of objective response rate among subgroups categorized by the three indicated subgroups classified by SpHe-comut status and DDR-comut status in the Inova cohort. (C) Kaplan-Meier estimates of OS classified by the three indicated subgroups classified by SpHe-comut status and DDR-comut status in the Miao cohort. (D) Proportional representation of objective response rate among subgroups categorized by the three indicated subgroups classified by SpHe-comut status and DDR-comut status in the Miao cohort. (D) Proportional representation of objective response rate among subgroups categorized by the three indicated subgroups classified by SpHe-comut status and DDR-comut status in the Miao cohort.

Figure S7. Comparison of SpHe-comut status with NOTCH and GMS for the prediction of ICB therapy in the Rizvi cohort.

A) Kaplan-Meier survival curves of PFS comparing the GMS-high and GMS-low groups. (B) Comparison of ORR between the GMS-high and GMS-low groups. (C) Kaplan-Meier survival curves of PFS comparing the NOTCH-high and NOTCH-low groups. (D) Comparison of ORR between the NOTCH-high and NOTCH-low groups.

Data source	Tumor	Ν	WES	RNAseq	Neoantigen	Clinical outcome	
TCGA	33 cohorts	9763	9763	9272	5446	OS	
Rizvi cohort	Non-small cell lung cancer with anti-PD-1 therapy	34	34	_	34	DCB PFS	
Hellmann cohort	Non-small cell lung cancer with anti-PD-1 plus anti-CTLA-4 therapy	75	75	_	75	DCB PFS	
Inova cohort	Melanoma with anti-PD-(L)1/ plus anti-CTLA-4 therapy	50	50	_	50	ORR PFS	
Allen cohort	Melanoma with anti-CTLA-4 therapy	110	110	_	110	ORR OS	
Snyder cohort	Melanoma with anti-CTLA-4 therapy	64	64	_	64	ORR OS	
Miao cohort	Pan-cancer with anti-PD-1/ anti-PD-L1/ anti- CTLA-4 therapy	284	284	_	_	ORR OS	
MSKCC cohort	Pan-cancer with anti-PD-1/ anti-PD-L1/ anti- CTLA-4 therapy	1661	1661	_	_	OS	

Table S1. Data source.

TCGA, The Cancer Genome Atlas; WES, whole-exome sequencing; ORR, objective response rate; DCB, durable clinical benefit; PFS, progression-free survival; OS, Overall survival.

Table S2. The Information for time period and dose selection of

involved cohorts.

(Full forms see the Additional file 2: Table S2.xlsx)

Classification	Genes				
Immune checkpoint	PD-1, PD-L1, PD-L2, LAG3, CTLA4, TIM3, VTCN1				
T-effector and INFγ pathway	GBP1, IFI16, IFI30, IFNG, IRF1, STAT1, TAP1, TAP2, FAS, PSMB9, IL15RA, GZMA, GZMB, EOMES, CXCL10, CXCL9, CXCL11, TBX21, PRF1				
T cell receptor	CD27, GRAP2, LCK, PTPRCAP, CCL5, IL2RB, IKZF3, CD3G, CD74, CD3D, CD8A, CD4, TIGIT				
Tumor microenvironment	IDO1, PTGS2, IL1B, IL18, IL6, IL12A, TNF, CD73				
Cytolytic activity (CYT)	GZMA, PRF1				
Major Histocompatibility complex (MHC)	HLA-A, HLA-B, HLA-C, TAP1, TAP2, NLRC5, PSMB9, PSMB8, B2M				
Gene expression profile (GEP)	CCL5, CD27, CD274, CD276, CD8A, CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2, PSMB10, STAT1, TIGIT				

Table S3. Gene list of immune-related gene signature.

Pathway	No. of Genes	HR (95% CI for HR)	P value	FDR
Spliceosome pathway	127	0.82 (0.75 - 0.9)	4.2e-05	0.001
Hedgehog signaling pathway	56	0.85 (0.77 - 0.94)	1.5e-03	0.029
ECM receptor interaction pathway	84	0.88 (0.81-0.95)	1.7e-03	0.029
RNA degradation pathway	59	0.83 (0.73 - 0.94)	3.9e-03	0.044
Peroxisome pathway	78	0.73 (0.64 - 0.83)	1.1e-06	< 0.001
Cytosolic DNA sensing pathway	55	0.78 (0.66 - 0.92)	2.8e-03	0.038

Table S4. The significant survival-associated signaling pathways identified by the multivariate Cox regression model adjusted by clinical factors.

Tumor	SpHe-comut				SpHe-comut ⁺			
Tumor	N	mean	SD	N	mean	SD	I value	
ACC	88	1.08	1.62	3	28.22	17.2	0.004	
BLCA	356	3.88	3.39	50	12.48	12.69	< 0.001	
BRCA	941	1.16	1.58	20	15.34	25.89	< 0.001	
CESC	251	2.73	3.30	24	25.11	54.83	< 0.001	
CHOL	43	1.00	1.67	1	15.76	-	0.098	
COAD	311	3.07	4.44	67	40.46	36.79	< 0.001	
DLBC	35	2.78	1.85	1	1.87	-	0.630	
ESCA	173	2.57	1.32	9	11.11	15.25	0.002	
GBM	373	1.16	0.60	7	70.95	115.04	0.001	
HNSC	479	2.56	2.18	27	11.50	14.76	< 0.001	
KICH	65	0.61	1.85	-	-	-	-	
KIRC	325	1.15	0.88	7	1.60	0.65	0.048	
KIRP	272	1.37	0.66	4	1.61	0.75	0.524	
LAML	114	0.62	2.03	-	-	-	-	
LGG	494	0.59	0.31	4	62.24	115.76	0.001	
LIHC	341	2.09	1.47	14	7.20	9.75	0.003	
LUAD	421	4.28	4.11	65	15.23	8.84	< 0.001	
LUSC	418	5.35	3.85	58	9.89	9.31	< 0.001	
MESO	78	0.67	0.67	-	-	-	-	
OV	423	1.46	0.90	9	3.79	5.78	0.041	
PAAD	145	0.70	0.43	3	105.61	180.18	0.006	
PCPG	175	0.18	0.12	-	-	-	-	
PRAD	473	0.55	0.63	2	83.75	94.62	0.015	
READ	120	2.27	1.08	9	83.12	101.62	< 0.001	
SARC	228	1.05	1.30	6	16.24	14.87	< 0.001	
SKCM	335	6.52	6.48	117	28.90	37.87	< 0.001	
STAD	336	3.29	4.71	64	29.57	27.01	< 0.001	
TGCT	127	0.31	0.20	-	-	-	-	

Table S5. Comparison of tumor mutational burden between SpHe-comut⁺ and SpHe-comut⁻ groups across different cancer types.

UVM	79	0.26	0.10	1	8.11	-	0.090	_
UCS	53	1.23	0.57	2	53.91	50.33	0.019	
UCEC	395	3.44	5.20	128	86.39	107.45	< 0.001	
THYM	107	0.43	1.65	-	-	-	-	
THCA	482	0.19	0.15	-	-	-	-	

T	SpHe-comut ⁻				SpHe-comut ⁺		
Tumor -	Ν	mean	SD	N	mean	SD	Pvalue
BLCA	340	206.17	188.59	46	643.80	530.74	< 0.001
BRCA	832	52.20	105.91	17	526.35	816.06	< 0.001
CESC	155	111.52	188.61	15	688.13	771.02	< 0.001
COAD	167	130.04	412.10	43	1047.12	917.22	< 0.001
GBM	144	55.79	29.90	-	-	-	-
HNSC	454	120.86	105.84	26	451.65	712.96	< 0.001
KICH	65	64.74	124.31	-	-	-	-
KIRC	253	54.81	30.97	5	70.20	26.90	0.188
KIRP	157	73.34	45.38	-	-	-	-
LIHC	171	90.09	64.33	9	177.89	220.87	0.056
LUAD	399	186.66	173.68	59	605.93	474.61	< 0.001
LUSC	151	238.61	195.39	21	460.71	435.89	0.002
OV	198	52.38	33.58	5	62.80	26.37	0.303
PAAD	119	80.26	64.94	3	5095	8608.33	0.017
PRAD	402	36.98	45.44	1	1152	-	0.089
READ	80	68.15	41.59	6	3031.33	3049.25	0.006
SKCM	247	231.29	252.77	84	725.92	715.22	< 0.001
STAD	73	118.97	114.27	7	2225.14	3564.30	< 0.001
THCA	372	15.75	15.55	-	-	-	-
UCEC	193	107.45	158.81	49	2339.94	3137.69	< 0.001

Table S6. Comparison of neoantigen load between SpHe-comut⁺ and SpHe-comut⁻ groups across different cancer types.