

Additional file 1: Fig. S1
a Colony formation analysis of NPC cell lines treated with HAMNO, IR, or their combination. b Representative image of the tumor sphere formation assay in NPC cells treated with a single inhibitor or combination with IR after 12 days of cell
culture. Scale bar $=25 / 50 \mu \mathrm{~m}$. \mathbf{c} Percentage of cells in apoptosis induced by RPAi or IR alone or in combination for 48 hours was determined via Annexin V/7-AAD staining and flow cytometry. d Representative images of $\gamma \mathrm{H} 2 \mathrm{~A}$ staining. Scale bar $=$ $50 \mu \mathrm{~m}$.

Additional file 1: Fig. S2
a $5-8 \mathrm{~F}$ and S26 cells were treated with DMSO or HAMNO $(10 \mu \mathrm{M}, 20 \mu \mathrm{M}$ or $30 \mu \mathrm{M})$ for 48 hours. Immunoblot analyses of cell lysates were performed to determine the levels of pmTOR, total mTOR, pS6K, p-4E-BP1 and ACTIN. b 5-8F and S26 were
treated with HAMNO $(15 \mu \mathrm{M})$ for 48 h . Cells were collected and subjected to RNAseq analysis. GSVA was completed to estimate the variation of different metabolic pathway activities in a nonsupervised manner. Each of the two cell lines was treated as a biological replicate. The GSVA scores for a gene set composed of autophagy-related and glycolysis genes were presented. GSVA scores of the two groups were compared using the Mann-Whitney U test. c Tumoroids treated with RPAi $(5 \mu \mathrm{M})$ or CQ or IR alone or in combination were captured by the IncuCyte system. d Percentage of cells in apoptosis induced by RPAi or CQ alone or in combination for 48 hours was determined via flow cytometry and Annexin V/7-AAD staining. e Representative images of HE and IHC with indicated antibodies in tumor tissues from S26 models (left). Scale bar = $25 \mu \mathrm{~m}$. IHC analysis of Ki67 and cleaved caspase-3 in tumor sections (right). \mathbf{f} Tumoroids treated with HAMNO ($5 \mu \mathrm{M}$), CQ or IR alone or in combination were captured by the IncuCyte system.

Additional file 1: Fig. S3
primers

QP-hGABARAPL1-Forward
QP-hGABARAPL1-Reverse
QP-hWIPI1- Forward
QP-hWIPI1- Reverse
QP-hSQSTM11- Forward QP-hSQSTM1- Reverse

TTGTAGAGAAGGCTCCAAAAGCC
GGTCTCAGGTGGATTCTCTTCC
CTTCAAGCTGGAACAGGTCACC
CGGAGAAGTTCAAGCGTGCAGT
TGTGTAGCGTCTGCGAGGGAAA
AGTGTCCGTGTTTCACCTTCCG

